百度NLP机器学习 一面凉经
百度NLP机器学习 一面凉经(写个东西警示自己, 希望自己能不被挫折打倒,不抛弃不放弃。。。)
面试官人很好,感觉年龄不大,全程会耐心听我回答,也会也会解答一些我的疑惑, 历时一个小时。
1.自我介绍 讲项目
2.对于CNN 卷积层、和池化层的物理意义是什么(不是计算方法)
3.对于池化的max方法和mean方法 分别适合针对什么情况下应用?
4.在工程中什么样的结果会表明是over fitting/under fitting
5.如何防止over fitting,答了cross validation / 正则化
6.对你所提到的L1和L2正则化,能否阐述一下他们的区别
7.L2正则化的penalize term和先验有关系嘛?如有是什么样的关系
8.对于普通线性回归 y = wx+b, 你认为w能否代表特征的重要性?请阐述原因。。这题不懂请教了一下面试官,面试官人很好,她说:“我认为不能,1. 如果特征的scale不同,w的大小就没有意义 2. 即使normalization后 如果有些特征是有强相关性的,比如你的生日和年龄,在选特征的时候也许是随机选一个。所以这并不能说w能代表特征的重要性”。
9.代码题
(1)排序二叉树 插入新数字(没复习数据结构,我都忘了什么叫排序二叉树)面试官就换了一个问。。。
(2)归并排序中的归并,共享屏幕,不运行
10.最后她问我有什么想问她的,我想让她总结一下我这次面试。她说你想听实话嘛。。。。。
我说想。。。总的评价:基础有些薄弱 深层问题经不起推敲(特别在项目上),停留在知道的层面无法投入工程,代码能力还行。
最后稳凉了。。。。以后加油