【牛客练习赛62】


A、牛妹的游戏


题目描述:
在二维空间上有若干个点,有两队(蓝方和绿方),每队都可以占边。
而当有其中一队占的边有可能有三条首尾相连就输出"yes",否则输出"no"。
图片说明
思路:
1.拉姆塞结论--点数超过5的图或者对应补图必有度数为3的环.不会证明(只会举例子)
2.由1知当n大于5时输出“yes”,只要判断n<=5的情况,数据较小,可以直接爆搜,任取三条边判断是否成环。
3.成环的依据就是如果三条边都别蓝方占领,那么就会形成蓝色三角形,如果都没被蓝方占领,那么就有可能被绿方占领,形成绿边。
Code:

#include<bits/stdc++.h>
using namespace std;
template <class T>
inline void read(T &res) {
    char c; T flag = 1;
    while ((c = getchar()) < '0' || c > '9')
        if (c == '-')
            flag = -1;
    res = c - '0';
    while ((c = getchar()) >= '0' && c <= '9')
        res = res * 10 + c - '0';
    res *= flag;
}
inline void noread() {
    char c;
    while ((c = getchar()) < '0' || c > '9');
    while ((c = getchar()) >= '0' && c <= '9');
}
int t,n,m,x,y;
int edge[10][10];
int main() {
    read(t);
    while(t--) {
        read(n),read(m);
        if(n>5) {
            for(int i=0;i<m;++i) noread(),noread();
            puts("yes");
            continue;
        }
        memset(edge,0,sizeof edge);
        for(int i=0;i<m;++i) {
            read(x),read(y);
            edge[x][y]=edge[y][x]=1;
        }
        bool flag=true;
        for(int i=1;i<=n&&flag;++i)
        for(int j=i+1;j<=n&&flag;++j)
        for(int k=j+1;k<=n&&flag;++k) if(edge[i][j]==edge[j][k]&&edge[j][k]==edge[k][i])
            flag=false;
        if(flag)    puts("no");
        else puts("yes");
    }
}

B、病毒扩散


题目描述:
一个二维平面,从左下角开始病毒扩散,每一个时刻每个感染点可以传上右两个点,使其+1。
求某一点在某一时刻的感染数。
图片说明
思路:
列举前4秒的表找规律(关键是当时我表都写不出来,虽然江大佬给我们看了表也说是杨辉三角,但是当时没感觉(江大佬tql))
第1秒:                第二秒:1x1
1                                         2x1  1x2
1 1                                      1x1  1x2  1x1
第三秒:              第四秒:1x1
1x1                                     4x1  1x4 
3x1  1x3                             6x1   3x4  1x6
3x1  2x3  1x3                     4x1   3x4  2x6  1x4
1x1  1x3  1x3  1x1             1x1   1x4  1x6  1x4  1x1
观察 'x' 左边的数字,正确的阅读方式是从右往左看,你会发现这是个杨辉三角,比赛时江大佬一直说是杨辉三角,可能我太菜了没懂大佬意思,所以 'x' 左边的数字为图片说明 (x,y都是从0开始)。
然后 'x' 右边的数字就更简单了,列数相同 'x' 右边的数字就相同,每一列 'x' 右边的数字等于杨辉三角第t层第y列的数字,也就是图片说明
快速求组合数:知道公式图片说明 后,先预处理求出1 ~ n的阶乘,再等需要的时候利用公式求直接求出,因为在做除法时是不能上下取余的,所以要改除一个数为乘一个数的逆元,可以用扩展欧几里得求逆元或者快速幂求逆元。快速幂求逆元码量小,如果a、mod互质,且mod为质数,那么a的逆元就是图片说明
Code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=998244353;
ll fact[100005];
template <class T>
inline void read(T &res) {
    char c; T flag = 1;
    while ((c = getchar()) < '0' || c > '9')
        if (c == '-')
            flag = -1;
    res = c - '0';
    while ((c = getchar()) >= '0' && c <= '9')
        res = res * 10 + c - '0';
    res *= flag;
}
ll qpow(ll a,ll b) {
    ll ans=1;
    while(b) {
        if(b&1) ans=ans*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ans;
}
ll n,x,y,t;
int main() {
    fact[0]=fact[1]=1;
    for(int i=2;i<=100000;++i) fact[i]=fact[i-1]*i%mod;
    read(n);
    while(n--) {
        read(x),read(y),read(t);
        if(x+y>t) {
            puts("0");
            continue;
        }
        ll l=fact[t-y]*qpow(fact[x]*fact[t-x-y]%mod,mod-2)%mod;
        ll r=fact[t]*qpow(fact[y]*fact[t-y]%mod,mod-2)%mod;
        printf("%lld\n",l*r%mod);
    }
}

C、牛牛染颜色


题意:
牛牛最近得到了一颗树,根是 1 号节点,他想要把这颗树染色。
每个节点可以染成白色和黑色,牛牛认为一种染色方案是好的当且仅当任意两个黑点的 lca(最近公共祖先)的颜色也是黑色的。
求一共有多少种好的染色的方案。
答案可能很大,请输出答案对1e9 + 7取模后的结果。
图片说明
思路:
知道题意后不难发现这是一道树形dp题(但是我不会),dp[u][0/1],0表示这个点涂黑色,1表示这个点涂白色
分开来转移:
1.结点u涂黑,那无论子树是什么情况,尽管下面没有黑色都都是符合的,所以我们可以无所顾及地得到状态转移方程dp[u][0]=图片说明 .
2.结点u涂白,所以我们单独把每个子节点是(黑/白)的情况加起来就好了,否则在 u 的子树内会存在两个点 x,y 使得 lca(x,y)=u,这样就不符合条件了。这个状态是包含空集的,所以在枚举子树统计的时候每颗子树贡献的答案要减 1,但最后也要把空集的情况算上,还要加个 1。
Code:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int mod = 1e9 + 7;
const int maxn=1e6+7;
template <class T>
inline void read(T &res) {
    char c; T flag = 1;
    while ((c = getchar()) < '0' || c > '9')
        if (c == '-')
            flag = -1;
    res = c - '0';
    while ((c = getchar()) >= '0' && c <= '9')
        res = res * 10 + c - '0';
    res *= flag;
}
int head[maxn],Next[maxn<<1],to[maxn<<1],tot;
ll dp[maxn][2];
void add(int x,int y) {
    to[++tot]=y;
    Next[tot]=head[x];
    head[x]=tot;
}
void dfs(int x,int fa) {
    ll zero=1,one=1;
    for(int i=head[x];i;i=Next[i]) {
        int y=to[i];
        if(y==fa)    continue;
        dfs(y,x);
        zero=zero*(dp[y][0]+dp[y][1])%mod;
        one=(one+dp[y][0]+dp[y][1]-1)%mod;
    }
    dp[x][0] = zero; dp[x][1] = one;
}
int n,u,v;
int main() {
    read(n);
    for(int i=2;i<=n;++i) {
        read(u),read(v);
        add(u,v);
        add(v,u);
    }
    dfs(1,0);
    printf("%lld\n",(dp[1][0]+dp[1][1])%mod);
    return 0;
}
全部评论

相关推荐

11-13 20:32
门头沟学院 Java
面向未来编程code:我没看到他咋急,他不就问你个问题。。。
点赞 评论 收藏
分享
1 收藏 评论
分享
牛客网
牛客企业服务