硬核拆解
点赞 评论

相关推荐

#聊聊我眼中的AI#我是22级硕士研究生,大概22年底,ChatGPT-3.5发布的时候,我就注册了账号尝试使用,那会儿的感觉就是“颠覆”二字。但2022/2023两年给导师写过近10篇本子,还都和大模型没关系,一直到2023年下半年才初见端倪,专家们开始说“2024年热门肯定是AI大模型”。课题组一直有研究AI,但基本上没有传承,2024年初导师开始要求我们研究大模型,这期间问过我好几个“愚蠢”的问题:“咱的3090训练大模型不够用?”“那为啥人家学校都能研究大模型,他们都有A100吗?”“你要想着去解决科学问题,比如能不能提升推理时间,能不能比世界第一更强!”“咱的显卡也是够用的,你看那台服务器就有两块4090D,那台有4060……”所以我认为AI不是科研项目,它不依赖学术界的主导。AI是一个工程领域,需要应用数学家和大量工程师的大规模投入,涉及购买GPU、建造服务器、数据处理和模型训练等,远非在办公室/会议室/酒桌上讨论可行性的问题。全球范围内,像中国和美国的大型AI模型,都是由企业主导的,而非大学或研究机构。因此,中国的学术界只能在旁边观望,已经没有话语权,也不应将美国的论文当作标杆。中国的学者普遍没有参与一线AI项目,这也是为什么他们觉得中国在AI领域落后,而实际在一线工作的美国公司认为中国并不差,甚至在某些领域有所领先。这种现象恰恰揭示了产学之间思维范式的根本差异。高校的科研体系本质上是围绕学科建设与论文产出的"盆景式创新",而企业驱动的AI革命则是以市场需求为导向的"雨林型进化"。当院士们还在用论文引用数丈量科研价值时,DeepSeek的工程师们已经在用每秒浮点运算次数重构认知边界。这并非学术界的失职,而是技术代际更替的必然——就像蒸汽机不会诞生于牛津大学的经院哲学,AI大模型时代的创新主场注定要回归到产业实践的熔炉之中。
在思考的熊熊很讨厌吃香菜:毕业生连工作都找不到,送外卖的送外卖,做保安的做保安,所以高校都在干什么,高校肯定在搞笑啊
点赞 评论 收藏
分享
牛客网
牛客企业服务