leetcode 72. 编辑距离

定义
编辑距离又称Leveinshtein距离,是由俄罗斯科学家Vladimir Levenshtein在1965年提出。编辑距离是计算两个文本相似度的算法之一,以字符串为例,字符串a和字符串b的编辑距离是将a转换成b的最小操作次数,这里的操作包括三种:

插入一个字符
删除一个字符
替换一个字符
举个例子,kitten和sitting的编辑距离是3,kitten -> sitten(k替换为s) -> sittin(e替换为i) -> sitting(插入g),至少要做3次操作。

实现
用leva,b(i,j)leva,b(i,j)来表示a和b的Leveinshtein距离(i和j分别代表a和b的长度),则:

当min(i,j)=0时,leva,b(i,j)=max(i,j),一个字符串的长度为0,编辑距离自然是另一个字符串的长度当min(i,j)=0时,leva,b(i,j)=max(i,j),一个字符串的长度为0,编辑距离自然是另一个字符串的长度
当ai=bj时,leva,b(i,j)=leva,b(i−1,j−1),比如xxcz和xyz的距离=xxc和xy的距离当ai=bj时,leva,b(i,j)=leva,b(i−1,j−1),比如xxcz和xyz的距离=xxc和xy的距离
否则,leva,b(i,j)为如下三项的最小值:否则,leva,b(i,j)为如下三项的最小值:
leva,b(i−1,j)+1(删除ai),比如xxc和xyz的距离=xx和xyz的距离+1leva,b(i−1,j)+1(删除ai),比如xxc和xyz的距离=xx和xyz的距离+1
leva,b(i,j−1)+1(插入bj),比如xxc和xyz的距离=xxcz和xyz的距离+1=xxc和xy的距离+1leva,b(i,j−1)+1(插入bj),比如xxc和xyz的距离=xxcz和xyz的距离+1=xxc和xy的距离+1
leva,b(i−1,j−1)+1(替换bj),比如xxc和xyz的距离=xxz和xyz的距离+1=xx和xy的距离+1leva,b(i−1,j−1)+1(替换bj),比如xxc和xyz的距离=xxz和xyz的距离+1=xx和xy的距离+1
用公式表示如下:

递归实现
用上面的公式可以很容易的写出递归实现:

public static int levenshteinDistance(String left, String right) {
    return levenshteinDistance(left.toCharArray(), left.length(), right.toCharArray(), right.length());
}
private static int levenshteinDistance(char[] left, int leftLen, char[] right, int rightLen) {
    if (Math.min(leftLen, rightLen) == 0) {
        return Math.max(leftLen, rightLen);
    }
    if (left[leftLen - 1] == right[rightLen - 1]) {
        return levenshteinDistance(left, leftLen - 1, right, rightLen - 1);
    }
    return Math.min(levenshteinDistance(left, leftLen - 1, right, rightLen),
            Math.min(levenshteinDistance(left, leftLen, right, rightLen - 1),
                    levenshteinDistance(left, leftLen - 1, right, rightLen - 1))) + 1;
}

递归的实现比较简单,递归的思想是通过递归的形式,最终得到一个由不可继续分割(递归出口)的式子组成的表达式,最终会存在非常多的重复的不可继续分割的式子,造成大量的重复计算,所以很低效。

动态规划实现
递归是从后向前分解,那与之相对的就是从前向后计算,逐渐推导出最终结果,此法被称之为动态规划,动态规划很适用于具有重叠计算性质的问题,但这个过程中会存储大量的中间计算的结果,一个好的动态规划算法会尽量减少空间复杂度。

全矩阵
以xxc和xyz为例,建立一个矩阵,通过矩阵记录计算好的距离:

当min(i,j)=0时,leva,b(i,j)=max(i,j)当min(i,j)=0时,leva,b(i,j)=max(i,j),根据此初始化矩阵的第一行和第一列:

依据上面的公式可以继续推导出第二行:

继续迭代,直至推导出最终结果:

这个过程记录了所有中间结果,空间复杂度为O(n2)O(n2),来看一下代码实现:

    public static int levenshteinDistance(String left, String right) {
        // 创建矩阵
        int[][] d = new int[left.length() + 1][right.length() + 1];
        // 初始化第一列
        for (int i = 0; i <= left.length(); i++) {
            d[i][0] = i;
        }
        // 初始化第一行
        for (int j = 1; j <= right.length(); j++) {
            d[0][j] = j;
        }
        // 从第二行第二列开始迭代
        for (int i = 1; i <= left.length(); i++) {
            for (int j = 1; j <= right.length(); j++) {
                // 套公式计算
                if (left.charAt(i - 1) == right.charAt(j - 1)) {
                    d[i][j] = d[i - 1][j - 1];
                } else {
                    d[i][j] = Math.min(d[i - 1][j], Math.min(d[i][j - 1], d[i - 1][j - 1])) + 1;
                }
            }
        }
    // 最后一个格子即为最终结果
    return d[left.length()][right.length()];
}

两行
空间复杂度可以继续优化,我们计算当前行时,只依赖上一行的数据,所以我们只需要O(2n)O(2n)的空间复杂度,代码实现:

public static int levenshteinDistance3(String left, String right) {
    int[] pre = new int[right.length() + 1];// 上一行
    int[] current = new int[right.length() + 1];// 当前行
    // 初始化第一行
    for (int i = 0; i < pre.length; i++) {
        pre[i] = i;
    }
    for (int i = 1; i <= left.length(); i++) {
        current[0] = i;// 第一列
        for (int j = 1; j <= right.length(); j++) {
            // 套公式计算
            if (left.charAt(i - 1) == right.charAt(j - 1)) {
                current[j] = pre[j - 1];
            } else {
                current[j] = Math.min(current[j - 1], Math.min(pre[j], pre[j - 1])) + 1;
            }
        }
        // current -> pre
        System.arraycopy(current, 0, pre, 0, current.length);
    }
    return pre[pre.length - 1];
}

单行
我们还可以进一步优化,其实只需要一行就可以了,计算当前格子时,只需要左、上、左上的值,左面的值可以直接得到,上面的值是当前格子修改前的旧值,也可以直接得到,左上角的值是左面格子修改前的旧值,需要暂存,这时空间复杂度为O(n)O(n)。

代码实现:

public static int levenshteinDistance(String left, String right) {
    // 初始化当前行
    int[] d = new int[right.length() + 1];
    for (int i = 0; i < d.length; i++) {
        d[i] = i;
    }
    int leftTop, nextLeftTop;
    for (int i = 1; i <= left.length(); i++) {     
        leftTop = i - 1;// 当前行的左上角初始值
        d[0] = i;// 第一列
        for (int j = 1; j <= right.length(); j++) {
            nextLeftTop = d[j];// 暂存,此时d[j]为上一行的值,也是d[j+1]左上角的值
            // 套公式计算
            if (left.charAt(i - 1) == right.charAt(j - 1)) {
                d[j] = leftTop;
            } else {
                d[j] = Math.min(d[j - 1], Math.min(d[j], leftTop)) + 1;
            }
            leftTop = nextLeftTop;
        }
    }
    return d[d.length - 1];
}

作者:他山之石头
来源:CSDN
原文:https://blog.csdn.net/ghsau/article/details/78903076

全部评论

相关推荐

和蔼:在竞争中脱颖而出,厉害! 但是有一个小问题:谁问你了?😡我的意思是,谁在意?我告诉你,根本没人问你,在我们之中0人问了你,我把所有问你的人都请来 party 了,到场人数是0个人,誰问你了?WHO ASKED?谁问汝矣?誰があなたに聞きましたか?누가 물어봤어?我爬上了珠穆朗玛峰也没找到谁问你了,我刚刚潜入了世界上最大的射电望远镜也没开到那个问你的人的盒,在找到谁问你之前我连癌症的解药都发明了出来,我开了最大距离渲染也没找到谁问你了我活在这个被辐射蹂躏了多年的破碎世界的坟墓里目睹全球核战争把人类文明毁灭也没见到谁问你了
点赞 评论 收藏
分享
霁华Tel:秋招结束了,好累。我自编了一篇对话,语言别人看不懂,我觉得有某种力量在控制我的身体,我明明觉得有些东西就在眼前,但身边的人却说啥也没有,有神秘人通过电视,手机等在暗暗的给我发信号,我有时候会突然觉得身体的某一部分不属于我了。面对不同的人或场合,我表现出不一样的自己,以至于都不知道自己到底是什么样子的人。我觉得我已经做的很好,不需要其他人的建议和批评,我有些时候难以控制的兴奋,但是呼吸都让人开心。
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务