pog loves szh II
http://acm.hdu.edu.cn/showproblem.php?pid=5265
pog loves szh II
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 3208 Accepted Submission(s): 890
Problem Description
Pog and Szh are playing games.There is a sequence with n numbers, Pog will choose a number A from the sequence. Szh will choose an another number named B from the rest in the sequence. Then the score will be (A+B) mod p.They hope to get the largest score.And what is the largest score?
Input
Several groups of data (no more than 5 groups,n≥1000).
For each case:
The following line contains two integers,n(2≤n≤100000),p(1≤p≤231−1)。
The following line contains n integers ai(0≤ai≤231−1)。
Output
For each case,output an integer means the largest score.
Sample Input
4 4 1 2 3 0 4 4 0 0 2 2
Sample Output
3 2
题解:
题意很简单,找出n个数中的两个,使它们的和模p之后最大。最基本想法当然是暴力枚举所有情况,然后选出最大的。但是注意到n的范围,最大1e5,暴力枚举绝对tle。后来我想到了二分法,但因为一个很脑残的错误wa了10遍(汗~)。下面贴代码。
#include<bits/stdc++.h>
using namespace std;
int n,p;
long long ve[100005];
bool cmp(int a,int b)
{
return a>b;
}
int main()
{
while(~scanf("%d%d",&n,&p))
{
memset(ve,-1,sizeof(ve));//这一步很重要,并且不能初始化为0,只能是负数,因为读入的数据中模p之后可能有为0的,当时因为没有这一步wa了10发
for (int i=0; i<n; ++i)
{
scanf("%lld",&ve[i]);
ve[i]%=p;
}
sort(ve,ve+n,cmp);
long long temp;
long long mx=(ve[0]+ve[1])%p;
for (int i=0; i<n; ++i)
{
temp=*upper_bound(ve+i+1,ve+n,p-ve[i],greater<int>() );//如果没有找到刚好小于p-ve[i]的数,会返回v[n]
if (temp==-1)
temp=-1e18;
mx=max(mx,ve[i]+temp);
}
printf("%lld\n",mx);
}
}