【写在前面】 最近在看检索和匹配相关的任务,之前对这个任务不太了解,只知道就是相似度对比,找出相似度最高的样本就可以了。但是了解之后,在模型训练过程中,有许多方法(损失函数)来拉近正样本的距离,拉远负样本的距离。下面简单盘点一下检索任务中的损失函数。 Triplet loss 先从最经典的三元组 loss 说起, 三元组的构成:从训练数据集中随机选一个样本,该样本称为Anchor,然后再随机选取一个和Anchor属于同一类的样本和不同类的样本,这两个样本对应的称为Positive 和Negative,由此构成一个三元组。 通过学习,让正样本特征表达之间的距离尽可能小,而负样本的特征表达之间的...