1)目光长远与数据收集
负反馈是一个需要长期维护的工作。在覆盖率和数据量比较少的情况下几乎起不了什么作用,也不能左右大盘的数据,但也是需求去做的,慢慢的积累,负反馈结果是比用户正反馈更加真实准确的训练模型的正例样本;
2)数据预测与功能类比
覆盖率预估。功能设计之前,要明确功能的使用覆盖率,如何预估其实是很简单的,需要类比其他类似功能,进行数据查询,就能大概的预估其带来的数据收益;
3)结果预测与需求灵活
需求在做之前,一定要考虑和预估到每一步的结果以及接下来的应对方法,这样才会避免反复做同一件事,需要有好的思考方式和做事习惯。
负反馈是一个需要长期维护的工作。在覆盖率和数据量比较少的情况下几乎起不了什么作用,也不能左右大盘的数据,但也是需求去做的,慢慢的积累,负反馈结果是比用户正反馈更加真实准确的训练模型的正例样本;
2)数据预测与功能类比
覆盖率预估。功能设计之前,要明确功能的使用覆盖率,如何预估其实是很简单的,需要类比其他类似功能,进行数据查询,就能大概的预估其带来的数据收益;
3)结果预测与需求灵活
需求在做之前,一定要考虑和预估到每一步的结果以及接下来的应对方法,这样才会避免反复做同一件事,需要有好的思考方式和做事习惯。
全部评论
相关推荐
11-19 18:40
安徽工业大学 网络安全 点赞 评论 收藏
分享
11-23 03:19
University of Miami Java 点赞 评论 收藏
分享