元象 大模型算法面经

不怎么发面经,但是元象的面试体验是目前面过所有的公司体验最好的,所以写出来分享一下

更新 ——————————————

9.30 二面
10.08 HR面(系统里写的联创面,以为是联合创始人面,结果是HR面)
HR很真诚,说不养鱼,很快谈薪

————————————————
大模型应用组:(面的时间比较早好些问题忘了)
8.24 投递
9.13 一面 30min
- 深挖实习
- deepspeed原理
- LoRA原理
- LN的作用
- 为什么LN能使模型训练更稳定
- 无手撕
9.19 二面挂 30min
- 全程深挖我的实习经历,无八股无手撕(面试官一直解释说是想鸡蛋里挑骨头,挺实诚的,行吧

9.23 被大模型研发组捞

9.25 刚一面完 1h:
- 深挖实习
- deepspeed原理
- deepspeed和以往张量并行的区别
- transformer结构
- 拷打多头注意力(为什么多头更好,能不能单头)
- Llama相对于Transformer decoder的改进点
- RMSNorm和LN的区别
- prenorm和postnorm的区别
- 模型训练时显存占用(优化器,梯度,激活值等都怎么估计,假设模型7b)
- 序列并行的原理
- 介绍一下位置编码(和面试官讨论了RoPE和NTK系列的位置编码)
- RoPE为什么能够表示相对位置
- RoPE怎么作用的,如何旋转(我说完后面试官从数学角度补充了他的理解,鼠鼠受益良多
- VLLM原理
- 为什么需要KV-cache
- “写个题呗,简单点的,反转链表吧”

这三场面试的面试官都很有礼貌。尤其刚面完的这场,面试官基础和技术都很强,感觉他没少看苏神博客,对原理拷打的很细致。很多问题我说完之后他会补上自己的理解和我讨论,不像是在面试哈哈哈。但是也感觉自己的所有积累也被他翻了个底朝天,收获很多,许愿一个二面~
全部评论
hr 面和谈薪隔了多久呀 我也在排序呢
点赞 回复 分享
发布于 10-13 19:34 北京
楼主谈薪完是发意向还是签两方?
点赞 回复 分享
发布于 10-17 19:24 广东

相关推荐

头像
11-01 19:45
已编辑
门头沟学院 算法工程师
一切都从昨天下午原以为是KPI的一面开始,没想到直接开出意外惊喜一面:自我介绍,然后讲了刚投的一篇1区论文的工作,分析整体的框架、具体的技术细节,常见的反问点(为什么这么设计、为什么有效,相比于之前的工作,主要好在哪里、最核心的贡献是什么)面试官自称是NLP背景的,然后问了一些常见的视觉和多模态大模型的模型结构、损失函数设计、训练及推理过程等(面试官有可能是故意扮猪吃老虎哈哈)Coding:最接近的三数之和;共享屏幕本地IDE,秒了一个n^2logn的做法,让进一步优化,最优解是双指针;不过面试官觉得编码能力应该可以,实现很快,提示完直接让过了原本以为月底发一面是KPI,结果面试官问我后面还有没有时间,现场约二面,等面试官进会议二面:自我介绍,二面面试官非常重量级(进会议的title和面试的深度广度全都拉满了)首先很深入了聊了相当多关于MLLM的内容:介绍一些MLLM的现状,再选一个近期的多模态大模型,介绍相较于CLIP、LlaVA早期版本进行了哪些改进: Qwen技术点比较多,之前没系统整理过,说了自己还有点印象的Intern-VL2,不过上次看Intern-VL2的论文已经是三个月前了,大概只答上两点比较核心的。然后继续深挖目前多模态大模型在数据层面相较于之前的改进,这个没答上来之后被面试官深挖了LoRA,可以说LoRA的每一个细节的角落全都被挖的干干净净,还有不少开放性思考题,甚至比上次小鹏CV大模型一面面试官挖的还狠得多。不过上次被拷打之后就很系统地整理了LoRA的相关内容,勉强答得还行吧以后再不能当git clone侠了。然后面试官针对我的专业背景(统计),深挖了几个ML、DL相关的数学层面的问题,有让共享屏幕开白板写过程和推导(不是特别难,不过挺新颖的,秋招还是第一次面试被问到这种类型的问题);紧接着针对我的Nature子刊工作中用到的Gaussian Graphical Model,讲了其与传统ML模型、神经网络和大模型的差异、区别和各自的优劣势。最后是一些相对开放性的问题:你是如何使用现代的LLM产品提高工作、学习和编码效率的?为什么这种方式有效果?LLM、LVM、MLLM未来发展的方向和前景大概是怎样的?整个二面的问题不止这些,太多了,又深又广,很多具体已经记不太清了,而且回答的过程中几乎都有进一步反问,深挖了很多东西二面面完,面试官也是直接当场联系三面面试官三面:自我介绍,三面面试官更是整个集团的技术大佬,NLP相关经验非常丰富,整场面试问的内容也偏NLP相关,我之前几乎0 NLP相关经验,汗流浃背了可以说,不过好在基础还行,凭自己的做CV和MLLM的积累,基本都答上了首先介绍了之前lab实习中做的LLM剪枝优化迁移的工作,然后深挖了相关的技术细节,不过刚聊完电脑音频直接罢工了,重新约到11.1下午11.1下午完整描述CLIP的原理、架构、工作过程、怎么对齐、怎么做image caption完整描述transformer输入一个文本序列如何做下一句预测的全过程,深挖了tokenize、位置编码、MHA、FFN、损失函数、输出转换各个部分接着从我项目经历中有关传统ML的经验出发,问了一些ML相关的八股,难度不大然后是偏主管面的一些内容:对工作环境的期望、自身性格优缺点等反问环节逮住大佬问了目前MLLM的相关业务和技术现状;最后是关于面试流程上的一些问题总体体验非常棒的三轮面试拷打深度广度强度高,但是也学到了非常多的东西,这也算是对自己能力的一种认可吧现在想想当初9月份面试难度远不及现在的团子、阿里、得物、理想,却被面挂了,可能还是简历不如现在优化的好,没能突出自己的优势,也没有勇气直接投更匹配自己的岗位吧(当初为了求保底,基本都投的机器学习、数据挖掘这种最“泛”的算法岗,或许应该早点鼓起勇气直接投自驾、MLLM和CV的)。今天看到牛u们团子开奖,各种sp、ssp,确实感觉羡慕+遗憾。最后许愿一个HR面吧 #秋招#  #算法工程师#  #牛客创作赏金赛#  #新浪#
查看13道真题和解析 牛客创作赏金赛
点赞 评论 收藏
分享
10 20 评论
分享
牛客网
牛客企业服务