金山wps算法岗一二三面综合面经

金山三轮面试结束了,hr小姐姐说1—2周出结果,许愿oc,发面经攒人品
9.24 笔试
10.11 一面
主要是八股拷打+一小部分项目
数据结构:
二叉树和平衡二叉树的概念
大根堆和小根堆的概念
堆排序的时间复杂度
Python:
list添加元素的方法
字典和列表的区别
修饰器的概念
迭代器与生成器
垃圾回收机制
机器学习和深度学习:
模型初始化方法 he初始化使用场景
模型压缩的方法
bn和ln的概念及优缺点
如何判断梯度爆炸和消失,如何解决
图像处理:
常见的图像边缘检测方法
canny算子的流程
图像直方图均衡化的流程

10.17 二面
大部分项目和小部分八股
主要介绍实习期间的项目以及自己做的具体工作,解决了什么问题,实习期间产出的论文和之前sota模型的对比。

10.23 hr面
首先问了一下bg,然后问了实习期间有什么收获,有没有遇到难题,怎么解决的。最后总结一下自己的优点和缺点,有没有想过如何克服缺点。
#24届软开秋招面试经验大赏#
全部评论
佬,没有手撕ma
1 回复 分享
发布于 2023-11-01 07:52 上海
金山ai算法部门怎样
1 回复 分享
发布于 2023-10-30 00:34 广东
请问三面问什么呀,难吗
点赞 回复 分享
发布于 2023-11-25 18:28 辽宁
老哥最后offer了嘛
点赞 回复 分享
发布于 2023-11-18 10:40 广东
我也是hr面完,不知道啥时候出结果,好慌
点赞 回复 分享
发布于 2023-10-30 01:21 湖南

相关推荐

个人背景:🔥985硕士,计算机专业,研究方向为机器学习/数据挖掘- 有推荐系统相关项目,Kaggle竞赛经历- 面试岗位:滴滴出行-算法工程师(机器学习/运筹优化方向)📝 面试全流程回顾1. 笔试(线上编程+数学)-算法题(2道,LeetCode中等偏上难度)- 动态规划:最长递增子序列变种(需优化到O(nlogn))- 图论:Dijkstra算法实现+路径还原- 数学题(概率统计+线性代数)- 贝叶斯定理应用题(拼车场景下的概率计算)- 矩阵分解(SVD)的原理与优化意义2. 技术一面(1小时)- 代码能力- 手撕:实现带权随机抽样(Reservoir Sampling变种)- 代码优化:如何减少时间复杂度?- 机器学习基础- XGBoost vs LightGBM的差异?如何选择分裂点?- 如何解决推荐系统中的冷启动问题?- 业务场景题- 滴滴拼车订单匹配如何建模?(聚类+贪心算法的取舍)3. 技术二面(1.5小时)- 项目深挖- 详细介绍Kaggle竞赛方案(特征工程、模型融合技巧)- 追问:如果数据分布偏移(如疫情前后出行规律变化),如何调整模型?- 系统设计- 设计一个实时ETA(预估到达时间)系统:- 数据源(GPS/交通路况/历史数据)- 模型选型(时序模型+在线学习)- 异常情况处理(突发拥堵如何动态调整?)- 算法发散题- 如何用算法减少司机空驶率?(转化为图的最短路径问题)4. HR面(30分钟)- 团队协作经历、抗压能力举例- 期望薪资与工作地点偏好🌟 总体而言,滴滴面试强度还是可以的,问题问的很细,如果不会的话,同学们尽量委婉回答,引导面试官问出问题。滴滴待遇还是相当可以的,最后给大家一个内推链接,还有内推码。🚘投递方式【内推链接】https://app.mokahr.com/m/campus_apply/didiglobal/96064?recommendCode=DSW46Dg7&hash=%23%2Fjobs#/jobs【内推码】DSW46Dg7全流程跟进,投递的同学评论区留言,方便后续跟进,秋招加油!#滴滴# #应届# #实习# #算法工程师# #校招# #滴滴出行# #内推#
点赞 评论 收藏
分享
个人背景:- 985硕士,计算机专业,研究方向为机器学习/数据挖掘- 有推荐系统相关项目,Kaggle竞赛经历- 面试岗位:滴滴出行-算法工程师(机器学习/运筹优化方向)📝 面试全流程回顾1. 笔试(线上编程+数学)-算法题(2道,LeetCode中等偏上难度)- 动态规划:最长递增子序列变种(需优化到O(nlogn))- 图论:Dijkstra算法实现+路径还原- 数学题(概率统计+线性代数)- 贝叶斯定理应用题(拼车场景下的概率计算)- 矩阵分解(SVD)的原理与优化意义2. 技术一面(1小时)- 代码能力- 手撕:实现带权随机抽样(Reservoir Sampling变种)- 代码优化:如何减少时间复杂度?- 机器学习基础- XGBoost vs LightGBM的差异?如何选择分裂点?- 如何解决推荐系统中的冷启动问题?- 业务场景题- 滴滴拼车订单匹配如何建模?(聚类+贪心算法的取舍)3. 技术二面(1.5小时)- 项目深挖- 详细介绍Kaggle竞赛方案(特征工程、模型融合技巧)- 追问:如果数据分布偏移(如疫情前后出行规律变化),如何调整模型?- 系统设计- 设计一个实时ETA(预估到达时间)系统:- 数据源(GPS/交通路况/历史数据)- 模型选型(时序模型+在线学习)- 异常情况处理(突发拥堵如何动态调整?)- 算法发散题- 如何用算法减少司机空驶率?(转化为图的最短路径问题)4. HR面(30分钟)- 团队协作经历、抗压能力举例- 期望薪资与工作地点偏好🌟 滴滴算法团队特点业务驱动:算法直接影响亿级用户体验,成就感强技术栈前沿:时空预测、强化学习、因果推断等均有落地成长快:技术大牛密集,新人可接触核心项目🚘投递方式【内推链接】https://app.mokahr.com/m/campus_apply/didiglobal/96064?recommendCode=DSW46Dg7&hash=%23%2Fjobs#/jobs【内推码】DSW46Dg7立刻投递,快人一步,抢跑未来全流程跟进,投递的同学评论区留言,方便后续跟进,秋招加油!#实习# #校招# #滴滴# #大厂内推# #内推# #算法岗#      
点赞 评论 收藏
分享
评论
10
76
分享

创作者周榜

更多
牛客网
牛客企业服务