招商西安线下二面

🕒 岗位/面试时间:30号早上,下了雨,赶到时西服都快湿透了
👥 面试题目:一张小桌子一对二,半结构,甚至偏聊天
你是数学专业,在金融行业有什么优势?(自我介绍)
因为我们对数学专业不太了解哈,你们专业主要都去什么方向就业?
(对着电脑说)看你投递了我们银行的很多其他子公司,你在选择工作地点时是怎么看的?
除去金融行业,你还投递了什么其他行业的公司?
我们银行大部分岗位还是服务和销售,你能接受调岗吗?(也有柜员意愿)
反问:面试结果什么时候出?(最快今晚)
柜员岗位具体是做什么的?

大概聊了10min不到
🤔 面试感受:和面试官聊的有说有笑的,有一位男性面试官不怎么说话,主要是女性面试官在问  反问时她也给我很细致的介绍柜员岗位的工作,还挺亲切的

吐槽一下,昨天早上面完说当天出结果,晚上十一点零几才通知二面...然后还要十一点四十之前预约  看xhs确实有人错过了,有点难搞

#银行笔面经互助#

全部评论
佬 后续有啥通知吗
点赞 回复 分享
发布于 10-30 22:04 重庆

相关推荐

投递百度等公司10个岗位
点赞 评论 收藏
分享
#秋招#经过10月的秋招,我计划的:人工智能四级考试、大模型网上课程、数学建模比赛,终于走到了今天。主要其实还是观念的问题。周四电机学院有个招聘会,我一看,JAVA开发6000+,要求还挺多。我就想,如果工资差不多,我想去做什么……其实数据标注也没什么,至少还是大模型公司呢。而且做数据比起应用和算法容易入行,不需要业务经验。今天要参加大学生职业规划大赛,我写的是算法工程师,但看了一个B站视频后,我终于在昨天晚上下定了决心:做大模型的数据。今天下午答辩前,同学突然说,“我们去面试吧”。于是我们翘掉了职业规划大赛,打车去了公司。就在我们学校附近,主要是做大模型的数据处理,给的不多,但有政府补贴,如果留下来还是比较客观。包括张锡芬的采访,亲身的就业形式,让我除去了硕士的傲气。今天面试时也见到了一些附近大学的本科生,他们和我有什么不同?因为多吃了几年苦,我就应该工资更高吗?(实际上硕士的政府补贴确实更多)我曾考虑过去培训几个月大模型,但当我想象时,我发现我其实并不想也不擅长做算法。算法工程师,只是我硕士专业投下的影子,是家长期望的高薪体面的工作,却不一定是我想做的工作。和面试官聊了很多,大模型、思维链(因为我简历上写了,网上课程没白学)、向量数据库,聊了数学建模大赛用的提示词工程和数据清洗。面完马上签了实习协议,下周二去入职。
投递哔哩哔哩等公司10个岗位
点赞 评论 收藏
分享
11-01 19:45
已编辑
门头沟学院 算法工程师
一切都从昨天下午原以为是KPI的一面开始,没想到直接开出意外惊喜一面:自我介绍,然后讲了刚投的一篇1区论文的工作,分析整体的框架、具体的技术细节,常见的反问点(为什么这么设计、为什么有效,相比于之前的工作,主要好在哪里、最核心的贡献是什么)面试官自称是NLP背景的,然后问了一些常见的视觉和多模态大模型的模型结构、损失函数设计、训练及推理过程等(面试官有可能是故意扮猪吃老虎哈哈)Coding:最接近的三数之和;共享屏幕本地IDE,秒了一个n^2logn的做法,让进一步优化,最优解是双指针;不过面试官觉得编码能力应该可以,实现很快,提示完直接让过了原本以为月底发一面是KPI,结果面试官问我后面还有没有时间,现场约二面,等面试官进会议二面:自我介绍,二面面试官非常重量级(进会议的title和面试的深度广度全都拉满了)首先很深入了聊了相当多关于MLLM的内容:介绍一些MLLM的现状,再选一个近期的多模态大模型,介绍相较于CLIP、LlaVA早期版本进行了哪些改进: Qwen技术点比较多,之前没系统整理过,说了自己还有点印象的Intern-VL2,不过上次看Intern-VL2的论文已经是三个月前了,大概只答上两点比较核心的。然后继续深挖目前多模态大模型在数据层面相较于之前的改进,这个没答上来之后被面试官深挖了LoRA,可以说LoRA的每一个细节的角落全都被挖的干干净净,还有不少开放性思考题,甚至比上次小鹏CV大模型一面面试官挖的还狠得多。不过上次被拷打之后就很系统地整理了LoRA的相关内容,勉强答得还行吧以后再不能当git clone侠了。然后面试官针对我的专业背景(统计),深挖了几个ML、DL相关的数学层面的问题,有让共享屏幕开白板写过程和推导(不是特别难,不过挺新颖的,秋招还是第一次面试被问到这种类型的问题);紧接着针对我的Nature子刊工作中用到的Gaussian Graphical Model,讲了其与传统ML模型、神经网络和大模型的差异、区别和各自的优劣势。最后是一些相对开放性的问题:你是如何使用现代的LLM产品提高工作、学习和编码效率的?为什么这种方式有效果?LLM、LVM、MLLM未来发展的方向和前景大概是怎样的?整个二面的问题不止这些,太多了,又深又广,很多具体已经记不太清了,而且回答的过程中几乎都有进一步反问,深挖了很多东西二面面完,面试官也是直接当场联系三面面试官三面:自我介绍,三面面试官更是整个集团的技术大佬,NLP相关经验非常丰富,整场面试问的内容也偏NLP相关,我之前几乎0 NLP相关经验,汗流浃背了可以说,不过好在基础还行,凭自己的做CV和MLLM的积累,基本都答上了首先介绍了之前lab实习中做的LLM剪枝优化迁移的工作,然后深挖了相关的技术细节,不过刚聊完电脑音频直接罢工了,重新约到11.1下午11.1下午完整描述CLIP的原理、架构、工作过程、怎么对齐、怎么做image caption完整描述transformer输入一个文本序列如何做下一句预测的全过程,深挖了tokenize、位置编码、MHA、FFN、损失函数、输出转换各个部分接着从我项目经历中有关传统ML的经验出发,问了一些ML相关的八股,难度不大然后是偏主管面的一些内容:对工作环境的期望、自身性格优缺点等反问环节逮住大佬问了目前MLLM的相关业务和技术现状;最后是关于面试流程上的一些问题总体体验非常棒的三轮面试拷打深度广度强度高,但是也学到了非常多的东西,这也算是对自己能力的一种认可吧现在想想当初9月份面试难度远不及现在的团子、阿里、得物、理想,却被面挂了,可能还是简历不如现在优化的好,没能突出自己的优势,也没有勇气直接投更匹配自己的岗位吧(当初为了求保底,基本都投的机器学习、数据挖掘这种最“泛”的算法岗,或许应该早点鼓起勇气直接投自驾、MLLM和CV的)。今天看到牛u们团子开奖,各种sp、ssp,确实感觉羡慕+遗憾。最后许愿一个HR面吧 #秋招#  #算法工程师#  #牛客创作赏金赛#  #新浪#
牛客610987445号:大佬膜拜! 26届的,来好好学习!!
查看13道真题和解析 牛客创作赏金赛
点赞 评论 收藏
分享
评论
3
2
分享
牛客网
牛客企业服务