6. informer源码分析-初始化与启动分析

informer架构

先来回忆一下informer的架构。

  • Reflector:Reflector 从 kube-apiserver 中 list&watch 资源对象,然后调用 DeltaFIFO 的 Add/Update/Delete/Replace 方法将资源对象及其变化包装成 Delta 并将其丢到 DeltaFIFO 中;
  • DeltaFIFO:DeltaFIFO 中存储着一个 map 和一个 queue,即map[object key]Deltas 以及 object key 的 queue,Deltas 为 Delta 的切片类型,Delta 装有对象及对象的变化类型(Added/Updated/Deleted/Sync) ,Reflector 负责 DeltaFIFO 的输入,Controller 负责处理 DeltaFIFO 的输出;
  • Controller:Controller 从 DeltaFIFO 的 queue 中 pop 一个 object key 出来,并获取其关联的 Deltas 出来进行处理,遍历 Deltas,根据对象的变化更新 Indexer 中的本地内存缓存,并通知 Processor,相关对象有变化事件发生;
  • Processor:Processor 根据对象的变化事件类型,调用相应的 ResourceEventHandler 来处理对象的变化;
  • Indexer:Indexer 中有 informer 维护的指定资源对象的相对于 etcd 数据的一份本地内存缓存,可通过该缓存获取资源对象,以减少对 apiserver、对 etcd 的请求压力;
  • ResourceEventHandler:用户根据自身处理逻辑需要,注册自定义的的 ResourceEventHandler,当对象发生变化时,将触发调用对应类型的 ResourceEventHandler 来做处理。

<br>

概述

    ...
	factory := informers.NewSharedInformerFactory(client, 30*time.Second)
	podInformer := factory.Core().V1().Pods()
	informer := podInformer.Informer()
	...
	go factory.Start(stopper)
	...
	if !cache.WaitForCacheSync(stopper, informer.HasSynced) {
		runtime.HandleError(fmt.Errorf("Timed out waiting for caches to sync"))
		return
	}
	...

上一节有列举了informer的使用代码,注意看到示例代码中的下面这段代码,做了informer初始化与启动,其中包括:(1)informers.NewSharedInformerFactory:初始化informer factory;(2)podInformer.Informer:初始化pod informer;(3)factory.Start:启动informer factory;(4)cache.WaitForCacheSync:等待list操作获取到的对象都同步到informer本地缓存Indexer中;

下面也将根据这四部分进行informer的初始化与启动分析。

<br>

1.SharedInformerFactory的初始化

1.1 sharedInformerFactory结构体

先来看下 sharedInformerFactory 结构体,看下里面有哪些属性。

看到几个比较重要的属性:

(1)client:连接 k8s 的 clientSet;

(2)informers:是个 map,可以装各个对象的 informer;

(3)startedInformers:记录已经启动的 informer;

// staging/src/k8s.io/client-go/informers/factory.go
type sharedInformerFactory struct {
	client           kubernetes.Interface
	namespace        string
	tweakListOptions internalinterfaces.TweakListOptionsFunc
	lock             sync.Mutex
	defaultResync    time.Duration
	customResync     map[reflect.Type]time.Duration

	informers map[reflect.Type]cache.SharedIndexInformer
	// startedInformers is used for tracking which informers have been started.
	// This allows Start() to be called multiple times safely.
	startedInformers map[reflect.Type]bool
}

1.2 NewSharedInformerFactory

NewSharedInformerFactory 方法用于初始化 informer factory,主要是初始化并返回 sharedInformerFactory 结构体。

// staging/src/k8s.io/client-go/informers/factory.go
func NewSharedInformerFactory(client kubernetes.Interface, defaultResync time.Duration) SharedInformerFactory {
	return NewSharedInformerFactoryWithOptions(client, defaultResync)
}

func NewFilteredSharedInformerFactory(client kubernetes.Interface, defaultResync time.Duration, namespace string, tweakListOptions internalinterfaces.TweakListOptionsFunc) SharedInformerFactory {
	return NewSharedInformerFactoryWithOptions(client, defaultResync, WithNamespace(namespace), WithTweakListOptions(tweakListOptions))
}

func NewSharedInformerFactoryWithOptions(client kubernetes.Interface, defaultResync time.Duration, options ...SharedInformerOption) SharedInformerFactory {
	factory := &sharedInformerFactory{
		client:           client,
		namespace:        v1.NamespaceAll,
		defaultResync:    defaultResync,
		informers:        make(map[reflect.Type]cache.SharedIndexInformer),
		startedInformers: make(map[reflect.Type]bool),
		customResync:     make(map[reflect.Type]time.Duration),
	}

	// Apply all options
	for _, opt := range options {
		factory = opt(factory)
	}

	return factory
}

<br>

2.对象informer的初始化

上一节有列举了 informer 的使用代码,注意看到示例代码中的下面这段代码,这里利用了工厂方法设计模式,podInformer.Informer() 即初始化了 sharedInformerFactory 中的 pod 的 informer,具体调用关系可自行看如下代码,比较简单,这里不再展开分析。

    // 初始化informer factory以及pod informer
	factory := informers.NewSharedInformerFactory(client, 30*time.Second)
	podInformer := factory.Core().V1().Pods()
	informer := podInformer.Informer()

2.1 podInformer.Informer

Informer 方法中调用了 f.factory.InformerFor 方法来做 pod informer 的初始化。

// k8s.io/client-go/informers/core/v1/pod.go
func (f *podInformer) Informer() cache.SharedIndexInformer {
	return f.factory.InformerFor(&corev1.Pod{}, f.defaultInformer)
}

2.2 f.factory.InformerFor

Informer 方法中调用了 f.factory.InformerFor 方法来做 pod informer 的初始化,并传入 f.defaultInformer 作为 newFunc,而在 f.factory.InformerFor 方法中,调用 newFunc 来初始化 informer。

这里也可以看到,其实 informer 初始化后会存储进 map f.informers[informerType] 中,即存储进 sharedInformerFactory 结构体的 informers 属性中,方便共享使用。

// staging/src/k8s.io/client-go/informers/factory.go
func (f *sharedInformerFactory) InformerFor(obj runtime.Object, newFunc internalinterfaces.NewInformerFunc) cache.SharedIndexInformer {
	f.lock.Lock()
	defer f.lock.Unlock()

	informerType := reflect.TypeOf(obj)
	informer, exists := f.informers[informerType]
	if exists {
		return informer
	}

	resyncPeriod, exists := f.customResync[informerType]
	if !exists {
		resyncPeriod = f.defaultResync
	}

	informer = newFunc(f.client, resyncPeriod)
	f.informers[informerType] = informer

	return informer
}

2.3 newFunc/f.defaultInformer

defaultInformer 方法中,调用了 NewFilteredPodInformer 方法来初始化 pod informer,最终初始化并返回 sharedIndexInformer 结构体。

// k8s.io/client-go/informers/core/v1/pod.go
func (f *podInformer) defaultInformer(client kubernetes.Interface, resyncPeriod time.Duration) cache.SharedIndexInformer {
	return NewFilteredPodInformer(client, f.namespace, resyncPeriod, cache.Indexers{cache.NamespaceIndex: cache.MetaNamespaceIndexFunc}, f.tweakListOptions)
}

func NewFilteredPodInformer(client kubernetes.Interface, namespace string, resyncPeriod time.Duration, indexers cache.Indexers, tweakListOptions internalinterfaces.TweakListOptionsFunc) cache.SharedIndexInformer {
	return cache.NewSharedIndexInformer(
		&cache.ListWatch{
			ListFunc: func(options metav1.ListOptions) (runtime.Object, error) {
				if tweakListOptions != nil {
					tweakListOptions(&options)
				}
				return client.CoreV1().Pods(namespace).List(options)
			},
			WatchFunc: func(options metav1.ListOptions) (watch.Interface, error) {
				if tweakListOptions != nil {
					tweakListOptions(&options)
				}
				return client.CoreV1().Pods(namespace).Watch(options)
			},
		},
		&corev1.Pod{},
		resyncPeriod,
		indexers,
	)
}

func NewSharedIndexInformer(lw ListerWatcher, objType runtime.Object, defaultEventHandlerResyncPeriod time.Duration, indexers Indexers) SharedIndexInformer {
	realClock := &clock.RealClock{}
	sharedIndexInformer := &sharedIndexInformer{
		processor:                       &sharedProcessor{clock: realClock},
		indexer:                         NewIndexer(DeletionHandlingMetaNamespaceKeyFunc, indexers),
		listerWatcher:                   lw,
		objectType:                      objType,
		resyncCheckPeriod:               defaultEventHandlerResyncPeriod,
		defaultEventHandlerResyncPeriod: defaultEventHandlerResyncPeriod,
		cacheMutationDetector:           NewCacheMutationDetector(fmt.Sprintf("%T", objType)),
		clock: realClock,
	}
	return sharedIndexInformer
}

2.4 sharedIndexInformer结构体

sharedIndexInformer 结构体中重点看到以下几个属性:

(1)indexer:对应着 informer 中的部件 Indexer,Indexer 中有 informer 维护的指定资源对象的相对于 etcd 数据的一份本地内存缓存,可通过该缓存获取资源对象,以减少对 apiserver、对 etcd 的请求压力;

(2)controller:对应着 informer 中的部件 Controller,Controller 从 DeltaFIFO 中 pop Deltas 出来处理,根据对象的变化更新 Indexer 中的本地内存缓存,并通知 Processor,相关对象有变化事件发生;

(3)processor:对应着 informer 中的部件 Processor,Processor 根据对象的变化事件类型,调用相应的 ResourceEventHandler 来处理对象的变化;

// staging/src/k8s.io/client-go/tools/cache/shared_informer.go
type sharedIndexInformer struct {
	indexer    Indexer
	controller Controller

	processor             *sharedProcessor
	cacheMutationDetector CacheMutationDetector

	// This block is tracked to handle late initialization of the controller
	listerWatcher ListerWatcher
	objectType    runtime.Object

	// resyncCheckPeriod is how often we want the reflector's resync timer to fire so it can call
	// shouldResync to check if any of our listeners need a resync.
	resyncCheckPeriod time.Duration
	// defaultEventHandlerResyncPeriod is the default resync period for any handlers added via
	// AddEventHandler (i.e. they don't specify one and just want to use the shared informer's default
	// value).
	defaultEventHandlerResyncPeriod time.Duration
	// clock allows for testability
	clock clock.Clock

	started, stopped bool
	startedLock      sync.Mutex

	// blockDeltas gives a way to stop all event distribution so that a late event handler
	// can safely join the shared informer.
	blockDeltas sync.Mutex
}

Indexer接口与cache结构体cache结构体为Indexer接口的实现;

// staging/src/k8s.io/client-go/tools/cache/store.go
type cache struct {
	cacheStorage ThreadSafeStore
	keyFunc KeyFunc
}

threadSafeMap struct 是 ThreadSafeStore 接口的一个实现,其最重要的一个属性便是 items 了,items 是用 map 构建的键值对,资源对象都存在 items 这个 map 中,key 根据资源对象来算出,value 为资源对象本身,这里的 items 即为 informer 的本地缓存了,而 indexers 与 indices 属性则与索引功能有关。

// staging/src/k8s.io/client-go/tools/cache/thread_safe_store.go
type threadSafeMap struct {
	lock  sync.RWMutex
	items map[string]interface{}

	// indexers maps a name to an IndexFunc
	indexers Indexers
	// indices maps a name to an Index
	indices Indices
}

关于 Indexer 的详细分析会在后续有专门的文章做分析,这里不展开分析;

controller 结构体

而 controller 结构体则包含了 informer 中的主要部件 Reflector 以及 DeltaFIFO;(1)Reflector:Reflector 从 kube-apiserver 中 list&watch 资源对象,然后将对象的变化包装成 Delta 并将其丢到 DeltaFIFO 中;(2)DeltaFIFO:DeltaFIFO 存储着 map[object key]Deltas 以及 object key 的 queue,Delta 装有对象及对象的变化类型 ,Reflector 负责 DeltaFIFO 的输入,Controller 负责处理 DeltaFIFO 的输出;

// staging/src/k8s.io/client-go/tools/cache/controller.go
type controller struct {
	config         Config
	reflector      *Reflector
	reflectorMutex sync.RWMutex
	clock          clock.Clock
}

type Config struct {
	// The queue for your objects; either a FIFO or
	// a DeltaFIFO. Your Process() function should accept
	// the output of this Queue's Pop() method.
	Queue
	...
}

<br>

3.启动sharedInformerFactory

sharedInformerFactory.Start 为 informer factory 的启动方法,其主要逻辑为循环遍历 informers,然后跑 goroutine 调用 informer.Run 来启动 sharedInformerFactory 中存储的各个 informer。

// staging/src/k8s.io/client-go/informers/factory.go
func (f *sharedInformerFactory) Start(stopCh <-chan struct{}) {
	f.lock.Lock()
	defer f.lock.Unlock()

	for informerType, informer := range f.informers {
		if !f.startedInformers[informerType] {
			go informer.Run(stopCh)
			f.startedInformers[informerType] = true
		}
	}
}

sharedIndexInformer.Run

sharedIndexInformer.Run 用于启动 informer,主要逻辑为:

(1)调用 NewDeltaFIFO,初始化 DeltaFIFO;

(2)构建 Config 结构体,这里留意下 Process 属性,赋值了 s.HandleDeltas,后面会分析到该方法;

(3)调用 New,利用 Config 结构体来初始化 controller;

(4)调用 s.processor.run,启动 processor;

(5)调用 s.controller.Run,启动 controller;

// staging/src/k8s.io/client-go/tools/cache/shared_informer.go
func (s *sharedIndexInformer) Run(stopCh <-chan struct{}) {
	defer utilruntime.HandleCrash()
    
    // 初始化DeltaFIFO
	fifo := NewDeltaFIFO(MetaNamespaceKeyFunc, s.indexer)
    
    // 构建Config结构体
	cfg := &Config{
		Queue:            fifo,
		ListerWatcher:    s.listerWatcher,
		ObjectType:       s.objectType,
		FullResyncPeriod: s.resyncCheckPeriod,
		RetryOnError:     false,
		ShouldResync:     s.processor.shouldResync,

		Process: s.HandleDeltas,
	}

	func() {
		s.startedLock.Lock()
		defer s.startedLock.Unlock()
        // 初始化controller
		s.controller = New(cfg)
		s.controller.(*controller).clock = s.clock
		s.started = true
	}()

	// Separate stop channel because Processor should be stopped strictly after controller
	processorStopCh := make(chan struct{})
	var wg wait.Group
	defer wg.Wait()              // Wait for Processor to stop
	defer close(processorStopCh) // Tell Processor to stop
	wg.StartWithChannel(processorStopCh, s.cacheMutationDetector.Run)
	// 启动processor
	wg.StartWithChannel(processorStopCh, s.processor.run)

	defer func() {
		s.startedLock.Lock()
		defer s.startedLock.Unlock()
		s.stopped = true // Don't want any new listeners
	}()
	// 启动controller
	s.controller.Run(stopCh)
}

3.1 New

New 函数初始化了 controller 并 return。

// staging/src/k8s.io/client-go/tools/cache/controller.go
func New(c *Config) Controller {
	ctlr := &controller{
		config: *c,
		clock:  &clock.RealClock{},
	}
	return ctlr
}

3.2 s.processor.run

s.processor.run 启动了 processor,其中注意到 listener.runlistener.pop 两个核心方法即可,暂时没有用到,等下面用到他们的时候再做分析。

// staging/src/k8s.io/client-go/tools/cache/shared_informer.go
func (p *sharedProcessor) run(stopCh <-chan struct{}) {
	func() {
		p.listenersLock.RLock()
		defer p.listenersLock.RUnlock()
		for _, listener := range p.listeners {
			p.wg.Start(listener.run)
			p.wg.Start(listener.pop)
		}
		p.listenersStarted = true
	}()
	<-stopCh
	p.listenersLock.RLock()
	defer p.listenersLock.RUnlock()
	for _, listener := range p.listeners {
		close(listener.addCh) // Tell .pop() to stop. .pop() will tell .run() to stop
	}
	p.wg.Wait() // Wait for all .pop() and .run() to stop
}

3.3 controller.Run

controller.Run 为 controller 的启动方法,这里主要看到几个点:

(1)调用 NewReflector,初始化 Reflector;

(2)调用 r.Run,实际上是调用了 Reflector 的启动方法来启动Reflector;

(3)调用 c.processLoop,开始 controller 的核心处理;

// k8s.io/client-go/tools/cache/controller.go
func (c *controller) Run(stopCh <-chan struct{}) {
	defer utilruntime.HandleCrash()
	go func() {
		<-stopCh
		c.config.Queue.Close()
	}()
	r := NewReflector(
		c.config.ListerWatcher,
		c.config.ObjectType,
		c.config.Queue,
		c.config.FullResyncPeriod,
	)
	r.ShouldResync = c.config.ShouldResync
	r.clock = c.clock

	c.reflectorMutex.Lock()
	c.reflector = r
	c.reflectorMutex.Unlock()

	var wg wait.Group
	defer wg.Wait()

	wg.StartWithChannel(stopCh, r.Run)

	wait.Until(c.processLoop, time.Second, stopCh)
}

3.3.1 Reflector结构体

先来看到 Reflector 结构体,这里重点看到以下属性:

(1)expectedType:放到 Store 中(即 DeltaFIFO 中)的对象类型;

(2)store:store 会赋值为 DeltaFIFO,具体可以看之前的 informer 初始化与启动分析即可得知,这里不再展开分析;

(3)listerWatcher:存放 list 方法和 watch 方法的 ListerWatcher interface 实现;

// k8s.io/client-go/tools/cache/reflector.go
type Reflector struct {
    ...
    expectedType reflect.Type
    store Store
    listerWatcher ListerWatcher
    ...
}

3.3.2 r.Run/Reflector.Run

Reflector.Run 方法中启动了 Reflector,而 Reflector 的核心处理逻辑为从 kube-apiserver 处做 list&watch 操作,然后将得到的对象封装存储进 DeltaFIFO 中。

// staging/src/k8s.io/client-go/tools/cache/reflector.go
func (r *Reflector) Run(stopCh <-chan struct{}) {
	klog.V(3).Infof("Starting reflector %v (%s) from %s", r.expectedTypeName, r.resyncPeriod, r.name)
	wait.Until(func() {
		if err := r.ListAndWatch(stopCh); err != nil {
			utilruntime.HandleError(err)
		}
	}, r.period, stopCh)
}

3.3.3 controller.processLoop

controller 的核心处理方法 processLoop 中,最重要的逻辑是循环调用 c.config.Queue.Pop 将 DeltaFIFO 中的队头元素给 pop 出来,然后调用 c.config.Process 方法来做处理,当处理出错时,再调用 c.config.Queue.AddIfNotPresent 将对象重新加入到 DeltaFIFO 中去。

// k8s.io/client-go/tools/cache/controller.go
func (c *controller) processLoop() {
	for {
		obj, err := c.config.Queue.Pop(PopProcessFunc(c.config.Process))
		if err != nil {
			if err == ErrFIFOClosed {
				return
			}
			if c.config.RetryOnError {
				// This is the safe way to re-enqueue.
				c.config.Queue.AddIfNotPresent(obj)
			}
		}
	}
}

3.3.4 c.config.Process/sharedIndexInformer.HandleDeltas

根据前面 sharedIndexInformer.Run 方法的分析中可以得知, c.config.Process 其实就是 sharedIndexInformer.HandleDeltas

HandleDeltas 方法中,将从 DeltaFIFO 中 pop 出来的对象以及类型,相应的在 indexer 中做添加、更新、删除操作,并调用 s.processor.distribute 通知自定义的 ResourceEventHandler。

// staging/src/k8s.io/client-go/tools/cache/shared_informer.go
func (s *sharedIndexInformer) HandleDeltas(obj interface{}) error {
	s.blockDeltas.Lock()
	defer s.blockDeltas.Unlock()

	// from oldest to newest
	for _, d := range obj.(Deltas) {
		switch d.Type {
		case Sync, Added, Updated:
			isSync := d.Type == Sync
			s.cacheMutationDetector.AddObject(d.Object)
			if old, exists, err := s.indexer.Get(d.Object); err == nil && exists {
				if err := s.indexer.Update(d.Object); err != nil {
					return err
				}
				s.processor.distribute(updateNotification{oldObj: old, newObj: d.Object}, isSync)
			} else {
				if err := s.indexer.Add(d.Object); err != nil {
					return err
				}
				s.processor.distribute(addNotification{newObj: d.Object}, isSync)
			}
		case Deleted:
			if err := s.indexer.Delete(d.Object); err != nil {
				return err
			}
			s.processor.distribute(deleteNotification{oldObj: d.Object}, false)
		}
	}
	return nil
}

怎么通知到自定义的ResourceEventHandler呢?继续往下看。

3.3.5 sharedIndexInformer.processor.distribute

可以看到 distribute 方法最终是将构造好的 addNotification、updateNotification、deleteNotification 对象写入到 p.addCh 中。

// staging/src/k8s.io/client-go/tools/cache/shared_informer.go
func (p *sharedProcessor) distribute(obj interface{}, sync bool) {
	p.listenersLock.RLock()
	defer p.listenersLock.RUnlock()

	if sync {
		for _, listener := range p.syncingListeners {
			listener.add(obj)
		}
	} else {
		for _, listener := range p.listeners {
			listener.add(obj)
		}
	}
}

func (p *processorListener) add(notification interface{}) {
	p.addCh <- notification
}

到这里,processor 中的 listener.pop 以及 listener.run 方法终于派上了用场,继续往下看。

3.3.6 listener.pop

分析 processorListener 的 pop 方法可以得知,其逻辑实际上就是将 p.addCh 中的对象给拿出来,然后丢进了 p.nextCh 中。那么谁来处理 p.nextCh 呢?继续往下看。

// staging/src/k8s.io/client-go/tools/cache/shared_informer.go
func (p *processorListener) pop() {
	defer utilruntime.HandleCrash()
	defer close(p.nextCh) // Tell .run() to stop

	var nextCh chan<- interface{}
	var notification interface{}
	for {
		select {
		case nextCh <- notification:
			// Notification dispatched
			var ok bool
			notification, ok = p.pendingNotifications.ReadOne()
			if !ok { // Nothing to pop
				nextCh = nil // Disable this select case
			}
		case notificationToAdd, ok := <-p.addCh:
			if !ok {
				return
			}
			if notification == nil { // No notification to pop (and pendingNotifications is empty)
				// Optimize the case - skip adding to pendingNotifications
				notification = notificationToAdd
				nextCh = p.nextCh
			} else { // There is already a notification waiting to be dispatched
				p.pendingNotifications.WriteOne(notificationToAdd)
			}
		}
	}
}

3.3.7 listener.run

在 processorListener 的 run 方法中,将循环读取 p.nextCh,判断对象类型,是 updateNotification 则调用 p.handler.OnUpdate 方法,是 addNotification 则调用 p.handler.OnAdd 方法,是 deleteNotification 则调用 p.handler.OnDelete 方法做处理。

// staging/src/k8s.io/client-go/tools/cache/shared_informer.go
func (p *processorListener) run() {
	// this call blocks until the channel is closed.  When a panic happens during the notification
	// we will catch it, **the offending item will be skipped!**, and after a short delay (one second)
	// the next notification will be attempted.  This is usually better than the alternative of never
	// delivering again.
	stopCh := make(chan struct{})
	wait.Until(func() {
		// this gives us a few quick retries before a long pause and then a few more quick retries
		err := wait.ExponentialBackoff(retry.DefaultRetry, func() (bool, error) {
			for next := range p.nextCh {
				switch notification := next.(type) {
				case updateNotification:
					p.handler.OnUpdate(notification.oldObj, notification.newObj)
				case addNotification:
					p.handler.OnAdd(notification.newObj)
				case deleteNotification:
					p.handler.OnDelete(notification.oldObj)
				default:
					utilruntime.HandleError(fmt.Errorf("unrecognized notification: %T", next))
				}
			}
			// the only way to get here is if the p.nextCh is empty and closed
			return true, nil
		})

		// the only way to get here is if the p.nextCh is empty and closed
		if err == nil {
			close(stopCh)
		}
	}, 1*time.Minute, stopCh)
}

p.handler.OnUpdate、p.handler.OnAdd、p.handler.OnDelete 方法实际上就是自定义的的 ResourceEventHandlerFuncs 了。

informer.AddEventHandler(cache.ResourceEventHandlerFuncs{
    AddFunc:    onAdd,
    UpdateFunc: onUpdate,
    DeleteFunc: onDelete,
  })
// staging/src/k8s.io/client-go/tools/cache/controller.go
type ResourceEventHandlerFuncs struct {
	AddFunc    func(obj interface{})
	UpdateFunc func(oldObj, newObj interface{})
	DeleteFunc func(obj interface{})
}

func (r ResourceEventHandlerFuncs) OnAdd(obj interface{}) {
	if r.AddFunc != nil {
		r.AddFunc(obj)
	}
}

func (r ResourceEventHandlerFuncs) OnUpdate(oldObj, newObj interface{}) {
	if r.UpdateFunc != nil {
		r.UpdateFunc(oldObj, newObj)
	}
}

func (r ResourceEventHandlerFuncs) OnDelete(obj interface{}) {
	if r.DeleteFunc != nil {
		r.DeleteFunc(obj)
	}
}

<br>

4.cache.WaitForCacheSync(stopper, informer.HasSynced)

可以看出在 cache.WaitForCacheSync 方法中,实际上是调用方法入参 cacheSyncs ...InformerSynced 来判断 cache 是否同步完成(即调用 informer.HasSynced 方法),而这里说的 cache 同步完成,意思是等待 informer 从 kube-apiserver 同步资源完成,即 informer 的 list 操作获取的对象都存入到 informer 中的 indexer 本地缓存中;

// staging/src/k8s.io/client-go/tools/cache/shared_informer.go
func WaitForCacheSync(stopCh <-chan struct{}, cacheSyncs ...InformerSynced) bool {
	err := wait.PollImmediateUntil(syncedPollPeriod,
		func() (bool, error) {
			for _, syncFunc := range cacheSyncs {
				if !syncFunc() {
					return false, nil
				}
			}
			return true, nil
		},
		stopCh)
	if err != nil {
		klog.V(2).Infof("stop requested")
		return false
	}

	klog.V(4).Infof("caches populated")
	return true
}

4.1 informer.HasSynced

HasSynced 方法实际上是调用了 sharedIndexInformer.controller.HasSynced 方法;

// staging/src/k8s.io/client-go/tools/cache/shared_informer.go
func (s *sharedIndexInformer) HasSynced() bool {
	s.startedLock.Lock()
	defer s.startedLock.Unlock()

	if s.controller == nil {
		return false
	}
	return s.controller.HasSynced()
}

s.controller.HasSynced

这里的 c.config.Queue.HasSynced() 方法,实际上是指 DeltaFIFO 的 HasSynced 方法,会在 DeltaFIFO 的分析中再详细分析,这里只需要知道当 informer 的 list 操作获取的对象都存入到 informer 中的 indexer 本地缓存中则返回 true 即可;

// staging/src/k8s.io/client-go/tools/cache/controller.go
func (c *controller) HasSynced() bool {
	return c.config.Queue.HasSynced()
}

4.2 sharedInformerFactory.WaitForCacheSync

可以顺带看下 sharedInformerFactory.WaitForCacheSync 方法,其实际上是遍历 factory 中的所有 informer,调用 cache.WaitForCacheSync,然后传入每个 informer 的 HasSynced 方法作为入参;

// staging/src/k8s.io/client-go/informers/factory.go
func (f *sharedInformerFactory) WaitForCacheSync(stopCh <-chan struct{}) map[reflect.Type]bool {
	informers := func() map[reflect.Type]cache.SharedIndexInformer {
		f.lock.Lock()
		defer f.lock.Unlock()

		informers := map[reflect.Type]cache.SharedIndexInformer{}
		for informerType, informer := range f.informers {
			if f.startedInformers[informerType] {
				informers[informerType] = informer
			}
		}
		return informers
	}()

	res := map[reflect.Type]bool{}
	for informType, informer := range informers {
		res[informType] = cache.WaitForCacheSync(stopCh, informer.HasSynced)
	}
	return res
}

至此,整个 informer 的初始化与启动的分析就结束了,后面会对 informer 中的各个核心部件进行详细分析,敬请期待。

总结下面用两张图片总结一下 informer 的初始化与启动;

informer初始化

informer启动

Kubernetes源码阅读 文章被收录于专栏

Kubernetes源码阅读

全部评论

相关推荐

菜菜咪:1. 可以使用简历网站的模版,美观度会更好一点 2. 邮箱可以重新申请一个,或者用qq邮箱的别名,部分hr可能会不喜欢数字邮箱 3. 项目经历最好分点描述,类似的项目很多,可以参考一下别人怎么写的 4. 自我评价可加可不加,技术岗更看重技术。最后,加油,优秀士兵
点赞 评论 收藏
分享
找不到工作死了算了:没事的,雨英,hr肯主动告知结果已经超越大部分hr了
点赞 评论 收藏
分享
评论
点赞
收藏
分享
牛客网
牛客企业服务