题解 | #不同路径的数目(一)#
不同路径的数目(一)
https://www.nowcoder.com/practice/166eaff8439d4cd898e3ba933fbc6358
import java.util.*; public class Solution { /** * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可 * * * @param m int整型 * @param n int整型 * @return int整型 */ public int uniquePaths (int m, int n) { // write code here int [][] dp = new int[m][n]; for(int i = 0; i < m; i++){ dp[i][0] = 1; } for(int i = 0; i < n; i++){ dp[0][i] = 1; } for(int i = 1; i < m; i++){ for(int j = 1; j < n; j++){ dp[i][j] = dp[i-1][j] + dp[i][j-1]; } } return dp[m-1][n-1]; } }
假设机器人站在点(i,j)处,其可以从(i-1,j)向下移动一行走到,也可以从向右移动一步走到。因此到达位置(i,j)出路径的数目等于到达位置(i-1,j)的路径数目 与达到(i,j-1)的路径数目之和。