牛客2023情人节比赛题解

单身狗给单身狗出的比赛(划掉

本场难度预估: easy:A mid: BCDE hard: FG

A.回眸

知识点:数学

我们首先需要计算小红和小紫相遇所需的时间,然后计算小红剩余的路程,即可算出剩余的时间,把两部分时间加起来即可。

参考代码:

#include<bits/stdc++.h>
using namespace std;
int main(){
    double a,v1,v2,v;
    cin>>a>>v1>>v2>>v;
    double t1=a/(v1+v2);
    double d1=v1*t1;
    printf("%.7f",t1+(a-d1)/v);
}

B.暧昧

知识点:乘法原理

对于所有的字符串而言,我们任取两个字符,那么它们相等和不相等的频率一定是相同的。 所以我们只需要算出总共2n2^n个字符串,任取两个字符有Cn2C_n^2种取法,最终除以2即可。答案是2n2n(n1)2^{n-2}*n*(n-1)

请注意,计算幂的时候需要用快速幂(python语言自带快速幂)

参考代码(python):

n=int(input())
mod=10**9+7
print(n*(n-1)*pow(2,n-2,mod)%mod)

C.悸动的距离

知识点:计算几何

我们分别统计线段和x轴、y轴是否有交点。当两点横坐标一正一负(或者有0)的时候,线段和x轴有交点。y轴则检验纵坐标。最后,我们需要特判线段是否经过原点。

参考代码:

#include<bits/stdc++.h>
using namespace std;
int main(){
    int a,b,c,d;
    int cc=0;
    cin>>a>>b>>c>>d;
    if(a*c<=0)cc++;
    if(b*d<=0)cc++;
    if(cc==2){
        if(a*d==b*c)cc--;
    }
    cout<<cc;
}

D.光晕

知识点:概率论

由于是环形路,第一个路灯放置的位置没有任何影响。第二个路灯放置的位置有3种情况:

  1. 和第一个路灯相邻,那么共照亮了4个位置。共有2个区间满足这个情况。
  2. 和第一个路灯相隔1个区间,那么共照亮了5个位置。共有2个区间满足这个情况。
  3. 剩下的情况都是照亮6个位置。共有n-5个区间满足这个情况。

因此答案是42n1+52n1+6n5n14*\frac{2}{n-1}+5*\frac{2}{n-1}+6*\frac{n-5}{n-1}

请注意,这里的除法需要用乘以逆元来代替。

对于n4n≤4的情况,我们理应进行特判,但实际套用公式后发现,计算的结果和预期是一样的。

参考代码:

n=int(input())
mod=10**9+7
print(((n-5)*6+2*4+2*5)*pow(n-1,mod-2,mod)%mod)

E 暖色记忆

知识点:贪心

本题容易想到的一个tip是:由于任何小于1e9的正整数除了32次2一定变成0,所以对于比较大的数组,最终一定绝大多数都是0,其余一些数是除了若干次2的。 那么一个比较显然的贪心就是,让最大值除1次2,倒数第二大值除2次2,以此类推……直到除2的次数超过32次或者已经选了一半的数为止。

参考代码(stl写法,可以练习set的用法,本题也可以直接排序):

#include<bits/stdc++.h>
using namespace std;
int main(){
    int a[303030];
    int n;
    cin>>n;
    multiset<int>s;
    for(int i=0;i<n;i++)cin>>a[i],s.insert(a[i]);
    int res=0,cnt=1;
    while(s.size()&&cnt<=min(31,n/2)){
        res+=(*s.rbegin()/(1LL<<(cnt++)));
        s.erase(prev(s.end()));
    }
    cout<<res;
}

F.灰音

知识点:动态规划

我们定义dp[i][j][k]dp[i][j][k]代表:前ii个数,平滑值为jj,且最后一个数为kk的方案数,那么可以O(n4)O(n^4)转移出所有情况。详细见参考代码。 看榜上有许多大佬用O(n3)O(n^3)过的,吊打出题人系列。 实测O(n4)O(n^4) c++语言300ms~700ms左右,python语音1800ms左右,而本题开了2s/4s,理论上不会被卡常。

参考代码:

#include<bits/stdc++.h>
using namespace std;
#define int long long
int a[3][3]={};
int dp[101][101][101];      //前i个 平滑值为j 最后一个为k
int mod=1e9+7;
int res[101];
signed main(){
    ios::sync_with_stdio(false);cin.tie(0);
    int _=1;
  //  cin>>_;
    while(_--){
        int n,i,j,k,t,x,z;
        cin>>n;
        for(i=1;i<=n;i++)dp[1][0][i]=1;
        for(i=2;i<=n;i++){
            for(j=0;j<n;j++){
                for(k=1;k<=n;k++){
                    for(z=1;z<=n;z++){
                        dp[i][max(j,abs(k-z))][k]+=dp[i-1][j][z];
                        dp[i][max(j,abs(k-z))][k]%=mod;
                    }
                    
                }
            }
        }
        for(i=1;i<=n;i++){
            for(j=0;j<n;j++){
                res[j]+=dp[n][j][i];
                res[j]%=mod;
            }
        }
        for(i=0;i<n;i++)cout<<res[i]<<"\n";
        
    }
}

G.难了

知识点:筛

首先我们需要知道一个性质,a/ba/b是无限循环小数(aabb互素)的充要条件是:bb包含了2和5以外的素因子。因此,本题可以先处理掉所有的2和5,然后直接在欧拉筛中筛出所有aja_jaia_i倍数的情况,其余情况则一定会产生无限循环小数。

参考代码:

#include<bits/stdc++.h>
using namespace std;
int main(){
    long long n,x,i,j;
    long long m[202020]={};
    cin>>n;
    long long res=n*(n-1);
    while(n--){
        cin>>x;
        while(x%2==0)x/=2;
        while(x%5==0)x/=5;
        m[x]++;
    }
    
    for(i=1;i<=2e5;i++){
        for(j=i*2;j<=2e5;j+=i){
            res-=m[i]*m[j];
        }
    }
    for(i=1;i<=2e5;i++)res-=m[i]*(m[i]-1);
    cout<<res;
}

希望没有npy的大家,可以在本场比赛中学到算法,卷死那些现充们!!! #^#

全部评论
lzgg什么时候女装讲题?
点赞 回复 分享
发布于 2023-02-14 21:10 陕西
LL res = n*(n-1)/2%mod*qmi(2,n-1,mod)%mod; LL res = n*(n-1)%mod*qmi(2,n-2,mod)%mod; 大佬,在C++中  同一份代码为什么第一个能过,第二个超时呢(通过了85.7%的数据)?不理解
点赞 回复 分享
发布于 2023-02-14 21:47 江西
多测忘记删除导致B题超时
点赞 回复 分享
发布于 2023-02-14 21:59 浙江
F how(n ^ 3)
点赞 回复 分享
发布于 2023-02-14 22:41 湖南
虽迟但到,不妨带女朋友一起***(bushi
点赞 回复 分享
发布于 2023-02-26 16:47 江西

相关推荐

totoroyyw:千年老妖😂
投递华为等公司10个岗位
点赞 评论 收藏
分享
点赞 评论 收藏
分享
16 1 评论
分享
牛客网
牛客企业服务