题解 | #矩阵最长递增路径#
矩阵最长递增路径
https://www.nowcoder.com/practice/7a71a88cdf294ce6bdf54c899be967a2
import java.util.*; public class Solution { private int[][] dirs = new int[][] { {-1, 0}, {1, 0}, {0, -1}, {0, 1} }; /** * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可 * 递增路径的最大长度 * @param matrix int整型二维数组 描述矩阵的每个数 * @return int整型 */ public int solve (int[][] matrix) { // write code here if (matrix == null || matrix.length < 1|| matrix[0] == null || matrix[0].length < 1) { return 0; } int res = 0; int n = matrix.length; int m = matrix[0].length; int[][] dp = new int[n + 1][m + 1]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { res = Math.max(res, dfs(matrix, dp, i, j)); } } return res; } private int dfs(int[][] matrix, int[][] dp, int i, int j) { if (dp[i][j] != 0) { return dp[i][j]; } int n = matrix.length; int m = matrix[0].length; dp[i][j]++; for (int k = 0; k < 4; k++) { int row = i + dirs[k][0]; int col = j + dirs[k][1]; if (row >= 0 && row < n && col >= 0 && col < m && matrix[row][col] > matrix[i][j]) { dp[i][j] = Math.max(dp[i][j], dfs(matrix, dp, row, col) + 1); } } return dp[i][j]; } }