深度学习与图神经网络研修
深度学习与图神经网络研修
时间
2022年10月13日 — 2022年10月17日 直播
特色:
1、采用深入浅出的方法,结合实例并配以大量代码练习,重点讲解深度学习框架模型、科学算法、训练过程技巧。
2、能够把握深度学习的技术发展趋势,可以熟练掌握深度学习核心技术、实践技巧,同时针对工作中存在的疑难问题进行分析讲解和专题讨论,有效的提升学员解决复杂问题的能力;
3、掌握深度学习平台Tensorflow训练网络搭建与配置、掌握数据价值的深度挖掘。
4、掌握图神经网络模型及框架PyTorch
5、实践手写字体识别、叶片分类等案例,动手练习让AI自己玩游戏。
6、根据自己的科研项目及课题研究,灵活掌握应用深度学习五大框架模型。
注:其它开源的公开数据集:ImageNet、MS-COCO、UCF101、HMDB51、PASCAL VOC、Open Images等。
安排
关键点 | 1. 人工智能、深度学习的发展历程 2. 深度学习框架 3. 神经网络训练方法 4. 卷积神经网络,卷积核、池化、通道、激活函数 5. 循环神经网络,长短时记忆LSTM、门控循环单元GRU 6. 参数初始化方法、损失函数Loss、过拟合 7. 对抗生成网络GAN 8. 迁移学习TL 9. 强化学习RF 10. 图神经网络GNN | |
一、算法和场景融合理解 | 1.空间相关性的非结构化数据,CNN算法。典型的图像数据,像素点之间具有空间相关性,例如图像的分类、分割、检测都是CNN算法。 2.时间相关性的非结构化数据,RNN算法。这类场景普遍的一个现象就是数据之间具有时序相关性,也就是数据之间存在先后依赖关系。例如自然语言处理、语音相关算法都是基于RNN算法。 3.非欧氏数据结构, GNN。这类场景典型的可以用图来表示。例如社交网络等。 | 案例摘要讲解 医疗领域:如流行疾病、肿瘤等相关疾病检测 遥感领域:如遥感影像中的场景识别 石油勘探:如石油油粒大小检测 轨道交通:如地铁密集人流检测 检测领域:如故障检测 公安领域:如犯罪行为分析 国防领域:目标检测、信号分析、态势感知… 经济领域:如股票预测 |
二、数据理解及处理 | 分析典型场景中的典型数据,结合具体的算法,对数据进行处理 | 1.结构化数据,如何对数据进行读取,进行组织。 2.图像数据,在实际应用过程中的处理方法,怎样做数据的预处理、进行数据增强等。 3.时序信号,将单点的数据如何组合成一个序列,以及对序列数据处理的基本方法。 |
三、技术路径设计 | 针对具体的场景设计特定的神经网络模型,对典型数据适配的网络结构进介绍。 | 1.DNN模型搭建的基本原则 2.CNN模型中常见的网络结构,以及参数分析。 3.RNN中支持的一些基本算子,如何对序列数据进行组织。 |
四、模型验证及问题排查 | 简单的算法或者模型对典型的场景进行快速验证,并且针对一些频发的问题进行讲解。 | 1. 模型收敛状态不佳 2. 分类任务重最后一层激活函数对模型的影响 |
五、高级-模型优化的原理 | 不同的模型需要采用的优化函数以及反向传播中参数的优化方法 | 1.模型优化的算法介绍,基于随机梯度下降的算法介绍。 2.不同场景适应的损失函数介绍。 3.针对典型场景的反向传播梯度的推到过程。 |
六、高级-定制化思路 | 结合往期学员的一些项目,简单介绍一下解决一个具体问题的思路。 | 遥感成像中,地块农作物种类的识别。
|
实操解析与训练 第一阶段: 神经网络实践 | 实验:神经网络 1.神经网络中基本概念理解:epoch、batch size、学习率、正则、噪声、激活函数等。 2.不同的数据生成模型、调整网络参数、调整网络规模 3.神经网络分类问题 4.不同数据特征的作用分析、隐含层神经元数目 5.过拟合 高频问题: 1.输入数据与数据特征 2.模型设计的过程中的参数与功能的关系。 关键点: 1.掌握神经网络的基本概念 2.学会搭建简单的神经网络结构 3.理解神经网络参数 | |
实操解析与训练 第二阶段: 深度学习三种编程思想 | 实验:Keras实践 1.理解Keras基本原理 2.学会Keras编程思想 3.三种不同的深度神经网络构建编程方式 4.给定数据集,采用Keras独立完成实际的工程项目 高频问题: 1.如何编程实现深度神经网络 2.三种开发方式的具体使用 关键点: 1.掌握Keras编程思想 2.采用三种不同方式编写深度神经网络 | |
实操解析与训练 第三阶段:CNN实践 | 实验:图像分类 1.使用CNN解决图像分类问题 2.搭建AlexNet 3.VGG16/19 4.GoogleNet 5.ResNet 高频问题: 1.CNN更复杂的模型在哪里可以找到代码 关键点: 1.使用卷积神经网络做图像分类 2.常见开源代码以及适用的问题 | |
实验:视频人物行为识别 1.基于C3D的视频行为识别方法 2.基于LSTM的视频行为识别方法 3.基于Attention的视频行为识别方法 高频问题: 1.2D卷积与3D卷积 2.视频的时空特征 关键点: 1.C3D网络的构建 2.Attention机制 | ||
实操解析与训练 第四阶段: R-CNN及YOLO实践 | 实验:目标检测 1.目标检测发展现状及代表性方法 2.两阶段目标检测方法:R-CNN系列模型 3.一阶段目标检测方法:YOLO系列模型 高频问题: 1.提名与分类 2.BBOX实现策略 3.YOLO Loss函数 关键点: 1.提名方法 2.ROI Pooling 3.SPP Net 4.RPN 5.YOLO | |
实操解析与训练 第五阶段: RNN实践 | 实验:股票预测 1.股票数据分析 2.同步预测 3.异步预测 高频问题: 1.历史数据的使用 关键点: 1.构建RNN 2.采用Keras编程实现 | |
实操解析与训练 第六阶段: Encoder-Decoder实践 | 实验:去噪分析 1.自编码器 2.去噪自编码器 高频问题: 1.噪声的引入与去除 关键点: 1.设计去噪自编码器 | |
实验:图像标题生成 结合计算机视觉和机器翻译的最新进展,利用深度神经网络生成真实的图像标题。 1.掌握Encoder-Decoder结构 2.学会Seq2seq结构 3.图像CNN +文本RNN 4.图像标题生成模型 高频问题: 1.如何能够根据图像生成文本? 关键点: 1.提取图像特征CNN,生成文本RNN 2.构建Encoder-Decoder结构 | ||
实操解析与训练 第七阶段: GAN实践 | 实验:艺术家作品生成 1. 生成对抗网络原理 2.GAN的生成模型、判别模型的设计 高频问题: 1.生成模型与判别模型的博弈过程 关键点: 1.掌握GAN的思想与原理 2.根据需求学会设计生成模型与判别模型 | |
实操解析与训练 第八阶段: 强化学习实践 | 实验:游戏分析 1.游戏场景分析 2.强化学习的要素分析 3.深度强化学习 高频问题: 1.DNN 与DQN 2.探索与利用 关键点: 1.深度强化学习的原理 2.根据实际需求,设计深度强化学习模型 | |
实操解析与训练 第九阶段: 图卷积神经网络实践 | 实验:社交网络分析 1.图神经网络的原理 2.图卷积神经网络的思想 3.设计图卷积神经网络进行社交网络分析 高频问题: 1.如何从图神经网络的原理转化到实际编程 关键点: 1. 掌握图神经网络原理 2. 图卷积神经网络编程实现 | |
实操解析与训练 第十阶段: Transformer实践 | 实验:基于Transformer的对话生成 1. Transformer原理 2. 基于Transformer的对话生成 3.基于 Transformer 的应用 高频问题: 1.如何应用自注意力机制 2.如何应用于自然语言处理与计算机视觉 关键点: 1.self-Attention机制 2.position |