面试官:手撕一下雪花算法

雪花算法:使用一个 64 bit 的 long 型的数字作为全局唯一 ID。在分布式系统中的应用十分广泛,因此也是面试官们比较喜欢问的一个问题。

下面我给大家详细介绍一下,大家下次再遇到这样的问题,就可以直接在面试官面前手撕代码了!

先说一下雪花算法(SnowFlake)

SnowFlake是twitter公司内部分布式项目采用的ID生成算法,开源后广受国内大厂的好评。由这种算法生成的ID,我们就叫做SnowFlakeID。

SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图:

分为四段:
第一段: 1位为未使用,永远固定为0。
(因为二进制中最高位是符号位,1表示负数,0表示正数。生成的id一般都是用正整数,所以最高位固定为0 )
第二段: 41位为毫秒级时间(41位的长度可以使用69年)
第三段: 10位为workerId(10位的长度最多支持部署1024个节点)
(这里的10位又分为两部分,第一部分5位表示数据中心ID(0-31)第二部分5位表示机器ID(0-31))
第四段: 12位为毫秒内的计数(12位的计数顺序号支持每个节点每毫秒产生4096个ID序号)


代码实现(含详细注解):

import java.util.HashSet;
import java.util.concurrent.atomic.AtomicLong;

public class SnowFlake {

    // 时间 41 位
    private static long lastTime = System.currentTimeMillis();

    // 数据中心 ID 5 位 (默认 0-31)
    private long datacenterId = 0;
    private long datacenterIdShift = 5;

    // 机房机器 ID 5 位 (默认 0-31)
    private long workerId = 0;
    private long workerIdShift = 5;

    // 随机数 12 位 (默认 0~4095)
    private AtomicLong random = new AtomicLong();
    private long randomShift = 12;
    // 随机数的最大值
    private long maxRandom = (long) Math.pow(2, randomShift);

    public SnowFlake() {
    }

    public SnowFlake(long workerIdShift, long datacenterIdShift){
        if (workerIdShift < 0 ||
                datacenterIdShift < 0 ||
                workerIdShift + datacenterIdShift > 22) {
            throw new IllegalArgumentException("参数不匹配");
        }
        this.workerIdShift = workerIdShift;
        this.datacenterIdShift = datacenterIdShift;
        this.randomShift = 22 - datacenterIdShift - workerIdShift;
        this.maxRandom = (long) Math.pow(2, randomShift);
    }

    // 获取雪花的 ID
    private long getId() {
        return lastTime << (workerIdShift + datacenterIdShift + randomShift) |
                workerId << (datacenterIdShift + randomShift) |
                datacenterId << randomShift |
                random.get();
    }

    // 生成一个新的 ID
    public synchronized long nextId() {
        long now = System.currentTimeMillis();

        // 如果当前时间和上一次时间不在同一毫秒内,直接返回
        if (now > lastTime) {
            lastTime = now;
            random.set(0);
            return getId();
        }

    // 将最后的随机数,进行 + 1 操作
        if (random.incrementAndGet() < maxRandom) {
            return getId();
        }

        // 自选等待下一毫秒
        while (now <= lastTime) {
            now = System.currentTimeMillis();
        }

        lastTime = now;
        random.set(0);
        return getId();

    }

    // 测试
    public static void main(String[] args) {
        SnowFlake snowFlake = new SnowFlake();
        HashSet<Long> set = new HashSet<>();
        for (int i = 0; i < 10000; i++) {
            set.add(snowFlake.nextId());
        }
        System.out.println(set.size());
    }

}

代码中获取 id 的方法利用位运算实现
img

1  |                    41                        |  5  |   5  |     12      

   0|0001100 10100010 10111110 10001001 01011100 00|00000|0 0000|0000 00000000 //41位的时间
   0|000000‭0 00000000 00000000 00000000 00000000 00|10001|0 0000|0000 00000000 //5位的数据中心ID
   0|0000000 00000000 00000000 00000000 00000000 00|00000|1 1001|0000 00000000 //5为的机器ID
or 0|0000000 00000000 00000000 00000000 00000000 00|00000|0 0000|‭0000 00000000‬ //12位的sequence
------------------------------------------------------------------------------------------
   0|0001100 10100010 10111110 10001001 01011100 00|10001|1 1001|‭0000 00000000‬ //结果:910499571847892992

面试官:写的非常好,那你知道它的优点和缺点么?

优点:

  1. 所有生成的id按时间趋势递增
  2. 整个分布式系统内不会产生重复id(因为有datacenterId和workerId来做区分)

缺点:
由于SnowFlake强依赖时间戳,所以时间的变动会造成SnowFlake的算法产生错误。


好了,今天关于雪花算法相关的内容就分享到这里。希望大家秋招路上早日拿到满意的Offer。

#面试##笔试速成法##算法题##算法##秋招#
全部评论
这东西就是你知道就简单 你不知道直接当场退役
2 回复 分享
发布于 2022-08-30 06:14 美国
手撕这个怕是劝退了
点赞 回复 分享
发布于 2022-08-29 14:25 北京
手撕劝退,知道分为三段,位数真记不太清楚
点赞 回复 分享
发布于 2022-09-12 17:15 湖南

相关推荐

牛舌:如果我不想去,不管对方给了多少,我一般都会说你们给得太低了。这样他们就会给下一个offer的人更高的薪资了。
点赞 评论 收藏
分享
9 35 评论
分享
牛客网
牛客企业服务