大数据面试题——Spark面试题(一)

1、spark的有几种部署模式,每种模式特点?(☆☆☆☆☆)

本地模式

Spark不一定非要跑在hadoop集群,可以在本地,起多个线程的方式来指定。将Spark应用以多线程的方式直接运行在本地,一般都是为了方便调试,本地模式分三类

    local:只启动一个executor

    local[k]:启动k个executor

    local[*]:启动跟cpu数目相同的 executor

standalone模式

分布式部署集群,自带完整的服务,资源管理和任务监控是Spark自己监控,这个模式也是其他模式的基础。

Spark on yarn模式

分布式部署集群,资源和任务监控交给yarn管理,但是目前仅支持粗粒度资源分配方式,包含cluster和client运行模式,cluster适合生产,driver运行在集群子节点,具有容错功能,client适合调试,dirver运行在客户端。

Spark On Mesos模式

官方推荐这种模式(当然,原因之一是血缘关系)。正是由于Spark开发之初就考虑到支持Mesos,因此,目前而言,Spark运行在Mesos上会比运行在YARN上更加灵活,更加自然。用户可选择两种调度模式之一运行自己的应用程序:

(1)粗粒度模式(Coarse-grained Mode):每个应用程序的运行环境由一个Dirver和若干个Executor组成,其中,每个Executor占用若干资源,内部可运行多个Task(对应多少个“slot”)。应用程序的各个任务正式运行之前,需要将运行环境中的资源全部申请好,且运行过程中要一直占用这些资源,即使不用,最后程序运行结束后,回收这些资源。

(2)细粒度模式(Fine-grained Mode):鉴于粗粒度模式会造成大量资源浪费,Spark On Mesos还提供了另外一种调度模式:细粒度模式,这种模式类似于现在的云计算,思想是按需分配。

2、Spark为什么比MapReduce块?(☆☆☆☆☆)

1)基于内存计算,减少低效的磁盘交互;

2)高效的调度算法,基于DAG;

3)容错机制Linage,精华部分就是DAG和Lingae

3、简单说一下hadoop和spark的shuffle相同和差异?(☆☆☆☆☆)

1)从 high-level 的角度来看,两者并没有大的差别。 都是将 mapper(Spark 里是 ShuffleMapTask)的输出进行 partition,不同的 partition 送到不同的 reducer(Spark 里 reducer 可能是下一个 stage 里的 ShuffleMapTask,也可能是 ResultTask)。Reducer 以内存作缓冲区,边 shuffle 边 aggregate 数据,等到数据 aggregate 好以后进行 reduce() (Spark 里可能是后续的一系列操作)。

2)从 low-level 的角度来看,两者差别不小。 Hadoop MapReduce 是 sort-based,进入 combine() 和 reduce() 的 records 必须先 sort。这样的好处在于 combine/reduce() 可以处理大规模的数据,因为其输入数据可以通过外排得到(mapper 对每段数据先做排序,reducer 的 shuffle 对排好序的每段数据做归并)。目前的 Spark 默认选择的是 hash-based,通常使用 HashMap 来对 shuffle 来的数据进行 aggregate,不会对数据进行提前排序。如果用户需要经过排序的数据,那么需要自己调用类似 sortByKey() 的操作;如果你是Spark 1.1的用户,可以将spark.shuffle.manager设置为sort,则会对数据进行排序。在Spark 1.2中,sort将作为默认的Shuffle实现。

3)从实现角度来看,两者也有不少差别。 Hadoop MapReduce 将处理流程划分出明显的几个阶段:map(), spill, merge, shuffle, sort, reduce() 等。每个阶段各司其职,可以按照过程式的编程思想来逐一实现每个阶段的功能。在 Spark 中,没有这样功能明确的阶段,只有不同的 stage 和一系列的 transformation(),所以 spill, merge, aggregate 等操作需要蕴含在 transformation() 中。

如果我们将 map 端划分数据、持久化数据的过程称为 shuffle write,而将 reducer 读入数据、aggregate 数据的过程称为 shuffle read。那么在 Spark 中,问题就变为怎么在 job 的逻辑或者物理执行图中加入 shuffle write 和 shuffle read的处理逻辑?以及两个处理逻辑应该怎么高效实现?

Shuffle write由于不要求数据有序,shuffle write 的任务很简单:将数据 partition 好,并持久化。之所以要持久化,一方面是要减少内存存储空间压力,另一方面也是为了 fault-tolerance。

4、Spark工作机制(☆☆☆☆☆)

1)构建Application的运行环境,Driver创建一个SparkContext

 val conf = new SparkConf();  conf.setAppName("test")  conf.setMaster("local")  val sc = new SparkContext(conf)

2)SparkContext向资源管理器(Standalone、Mesos、Yarn)申请Executor资源,资源管理器启动StandaloneExecutorbackend(Executor)

3)Executor向SparkContext申请Task

4)SparkContext将应用程序分发给Executor

5)SparkContext就建成DAG图,DAGScheduler将DAG图解析成Stage,每个Stage有多个task,形成taskset发送给task Scheduler,由task Scheduler将Task发送给Executor运行

6)Task在Executor上运行,运行完释放所有资源

5、Spark的优化怎么做?(☆☆☆☆☆)

Spark调优比较复杂,但是大体可以分为三个方面来进行

1)平台层面的调优:防止不必要的jar包分发,提高数据的本地性,选择高效的存储格式如parquet

2)应用程序层面的调优:过滤操作符的优化降低过多小任务,降低单条记录的资源开销,处理数据倾斜,复用RDD进行缓存,作业并行化执行等等

3)JVM层面的调优:设置合适的资源量,设置合理的JVM,启用高效的序列化方法如kyro,增大off head内存等等

6、数据本地性是在哪个环节确定的?(☆☆☆☆☆)

具体的task运行在那他机器上,DAG划分stage的时候确定的

7、RDD的弹性表现在哪几点?(☆☆☆☆☆)

1)存储的弹性:内存与磁盘的自动切换

    Spark优先把数据放到内存中,如果内存放不下,就会放到磁盘里面,程序进行自动的存储切换

2)容错的弹性:数据丢失可以自动恢复

    在RDD进行转换和动作的时候,会形成RDD的Lineage依赖链,当某一个RDD失效的时候,可以通过重新计算上游的RDD来重新生成丢失的RDD数据

3)计算的弹性:计算出重试机制

(1)Task如果失败会自动进行特定次数的重试

 RDD的计算任务如果运行失败,会自动进行任务的重新计算,默认次数是4次

(2)Stage如果失败会自动进行特定次数的重试

 如果Job的某个Stage阶段计算失败,框架也会自动进行任务的重新计算,默认次数也是4次

4)分片的弹性:可根据需要重新分片

    可以根据业务的特征,动态调整数据分片的个数,提升整体的应用执行效率

5)Checkpoint和Persist可主动或被动触发

    RDD可以通过Persist持久化将RDD缓存到内存或者磁盘,当再次用到该RDD时直接读取就行。也可以将RDD进行检查点,检查点会将数据存储在HDFS中,该RDD的所有父RDD依赖都会被移除

8、RDD有哪些缺陷?(☆☆☆☆☆)

1)不支持细粒度的写和更新操作(如网络爬虫),spark写数据是粗粒度的。所谓粗粒度,就是批量写入数据,为了提高效率。但是读数据是细粒度的也就是说可以一条条的读

2)不支持增量迭代计算,Flink支持

9、Spark的Shuffle过程(☆☆☆☆☆)

Shuffle核心要点 

ShuffleMapStage与ResultStage

在划分stage时,最后一个stage称为FinalStage,它本质上是一个ResultStage对象,前面的所有stage被称为ShuffleMapStage。

ShuffleMapStage的结束伴随着shuffle文件的写磁盘。

ResultStage基本上对应代码中的action算子,即将一个函数应用在RDD的各个partition的数据集上,意味着一个job的运行结束。

Shuffle中的任务个数

我们知道,Spark Shuffle分为map阶段和reduce阶段,或者称之为ShuffleRead阶段和ShuffleWrite阶段,那么对于一次Shuffle,map过程和reduce过程都会由若干个task来执行,那么map task和reduce task的数量是如何确定的呢?

假设Spark任务从HDFS中读取数据,那么初始RDD分区个数由该文件的split个数决定,也就是一个split对应生成的RDD的一个partition,我们假设初始partition个数为N。

初始RDD经过一系列算子计算后(假设没有执行repartition和coalesce算子进行重分区,则分区个数不变,仍为N,如果经过重分区算子,那么分区个数变为M),我们假设分区个数不变,当执行到Shuffle操作时,map端的task个数和partition个数一致,即map task为N个。

reduce端的stage默认取spark.default.parallelism这个配置项的值作为分区数,如果没有配置,则以map端的最后一个RDD的分区数作为其分区数(也就是N),那么分区数就决定了reduce端的task的个数。

reduce端数据的读取

根据stage的划分我们知道,map端task和reduce端task不在相同的stage中,map task位于ShuffleMapStage,reduce task位于ResultStage,map task会先执行,那么后执行的reduce task如何知道从哪里去拉取map task落盘后的数据呢?

reduce端的数据拉取过程如下:

1)map task执行完毕后会将计算状态以及磁盘小文件位置等信息封装到MapStatus对象中,然后由本进程中的MapOutPutTrackerWorker对象将mapStatus对象发送给Driver进程的MapOutPutTrackerMaster对象;

2)在reduce task开始执行之前会先让本进程中的MapOutputTrackerWorker向Driver进程中的MapoutPutTrakcerMaster发动请求,请求磁盘小文件位置信息;

3)当所有的Map task执行完毕后,Driver进程中的MapOutPutTrackerMaster就掌握了所有的磁盘小文件的位置信息。此时MapOutPutTrackerMaster会告诉MapOutPutTrackerWorker磁盘小文件的位置信息;

4)完成之前的操作之后,由BlockTransforService去Executor0所在的节点拉数据,默认会启动五个子线程。每次拉取的数据量不能超过48M(reduce task每次最多拉取48M数据,将拉来的数据存储到Executor内存的20%内存中)。

Shuffle过程介绍 

Shuffle Writer

Spark丰富了任务类型,有些任务之间数据流转不需要通过Shuffle,但是有些任务之间还是需要通过Shuffle来传递数据,比如wide dependency的group by key。

Spark中需要Shuffle输出的Map任务会为每个Reduce创建对应的bucket,Map产生的结果会根据设置的partitioner得到对应的bucketId,然后填充到相应的bucket中去。每个Map的输出结果可能包含所有的Reduce所需要的数据,所以每个Map会创建R个bucket(R是reduce的个数),M个Map总共会创建M*R个bucket。

Map创建的bucket其实对应磁盘上的一个文件,Map的结果写到每个bucket中其实就是写到那个磁盘文件中,这个文件也被称为blockFile,是Disk Block Manager管理器通过文件名的Hash值对应到本地目录的子目录中创建的。每个Map要在节点上创建R个磁盘文件用于结果输出,Map的结果是直接输出到磁盘文件上的,100KB的内存缓冲是用来创建Fast Buffered OutputStream输出流。这种方式一个问题就是Shuffle文件过多。

针对上述Shuffle过程产生的文件过多问题,Spark有另外一种改进的Shuffle过程:consolidation Shuffle,以期显著减少Shuffle文件的数量。在consolidation Shuffle中每个bucket并非对应一个文件,而是对应文件中的一个segment部分。Job的map在某个节点上第一次执行,为每个reduce创建bucket对应的输出文件,把这些文件组织成ShuffleFileGroup,当这次map执行完之后,这个ShuffleFileGroup可以释放为下次循环利用;当又有map在这个节点上执行时,不需要创建新的bucket文件,而是在上次的ShuffleFileGroup中取得已经创建的文件继续追加写一个segment;当前次map还没执行完,ShuffleFileGroup还没有释放,这时如果有新的map在这个节点上执行,无法循环利用这个ShuffleFileGroup,而是只能创建新的bucket文件组成新的ShuffleFileGroup来写输出。

比如一个Job有3个Map和2个reduce:(1) 如果此时集群有3个节点有空槽,每个节点空闲了一个core,则3个Map会调度到这3个节点上执行,每个Map都会创建2个Shuffle文件,总共创建6个Shuffle文件;(2) 如果此时集群有2个节点有空槽,每个节点空闲了一个core,则2个Map先调度到这2个节点上执行,每个Map都会创建2个Shuffle文件,然后其中一个节点执行完Map之后又调度执行另一个Map,则这个Map不会创建新的Shuffle文件,而是把结果输出追加到之前Map创建的Shuffle文件中;总共创建4个Shuffle文件;(3) 如果此时集群有2个节点有空槽,一个节点有2个空core一个节点有1个空core,则一个节点调度2个Map一个节点调度1个Map,调度2个Map的节点上,一个Map创建了Shuffle文件,后面的Map还是会创建新的Shuffle文件,因为上一个Map还正在写,它创建的ShuffleFileGroup还没有释放;总共创建6个Shuffle文件。

Shuffle Fetcher

Reduce去拖Map的输出数据,Spark提供了两套不同的拉取数据框架:

1)通过socket连接去取数据

2)使用netty框架去取数据

每个节点的Executor会创建一个BlockManager,其中会创建一个BlockManagerWorker用于响应请求。当Reduce的GET_BLOCK的请求过来时,读取本地文件将这个blockId的数据返回给Reduce。如果使用的是Netty框架,BlockManager会创建ShuffleSender用于发送Shuffle数据。

并不是所有的数据都是通过网络读取,对于在本节点的Map数据,Reduce直接去磁盘上读取而不再通过网络框架。

Reduce拖过来数据之后以什么方式存储呢?Spark Map输出的数据没有经过排序,Spark Shuffle过来的数据也不会进行排序,Spark认为Shuffle过程中的排序不是必须的,并不是所有类型的Reduce需要的数据都需要排序,强制地进行排序只会增加Shuffle的负担。Reduce拖过来的数据会放在一个HashMap中,HashMap中存储的也是<key, value>对,key是Map输出的key,Map输出对应这个key的所有value组成HashMap的value。Spark将Shuffle取过来的每一个<key, value>对插入或者更新到HashMap中,来一个处理一个。HashMap全部放在内存中。

Shuffle取过来的数据全部存放在内存中,对于数据量比较小或者已经在Map端做过合并处理的Shuffle数据,占用内存空间不会太大,但是对于比如group by key这样的操作,Reduce需要得到key对应的所有value,并将这些value组一个数组放在内存中,这样当数据量较大时,就需要较多内存。

当内存不够时,要不就失败,要不就用老办法把内存中的数据移到磁盘上放着。Spark意识到在处理数据规模远远大于内存空间时所带来的不足,引入了一个具有外部排序的方案。Shuffle过来的数据先放在内存中,当内存中存储的<key, value>对超过1000并且内存使用超过70%时,判断节点上可用内存如果还足够,则把内存缓冲区大小翻倍,如果可用内存不再够了,则把内存中的<key, value>对排序然后写到磁盘文件中。最后把内存缓冲区中的数据排序之后和那些磁盘文件组成一个最小堆,每次从最小堆中读取最小的数据,这个和MapReduce中的merge过程类似。

MapReduce和Spark的Shuffle过程对比

MapReduce Spark
collect 在内存中构造了一块数据结构用于map输出的缓冲 没有在内存中构造一块数据结构用于map输出的缓冲,而是直接把输出写到磁盘文件
sort map输出的数据有排序 map输出的数据没有排序
merge 对磁盘上的多个spill文件最后进行合并成一个输出文件 在map端没有merge过程,在输出时直接是对应一个reduce的数据写到一个文件中,这些文件同时存在并发写,最后不需要合并成一个
copy框架 jetty netty或者直接socket流
对于本节点上的文件 仍然是通过网络框架拖取数据 不通过网络框架,对于在本节点上的map输出文件,采用本地读取的方式
copy过来的数据存放位置 先放在内存,内存放不下时写到磁盘 一种方式全部放在内存;另一种方式先放在内存
merge sort 最后会对磁盘文件和内存中的数据进行合并排序 对于采用另一种方式时也会有合并排序的过程

Shuffle后续优化方向

通过上面的介绍,我们了解到,Shuffle过程的主要存储介质是磁盘,尽量的减少IO是Shuffle的主要优化方向。我们脑海中都有那个经典的存储金字塔体系,Shuffle过程为什么把结果都放在磁盘上,那是因为现在内存再大也大不过磁盘,内存就那么大,还这么多张嘴吃,当然是分配给最需要的了。如果具有“土豪”内存节点,减少Shuffle IO的最有效方式无疑是尽量把数据放在内存中。下面列举一些现在看可以优化的方面,期待经过我们不断的努力,TDW计算引擎运行地更好。

MapReduce Shuffle后续优化方向

  • 压缩:对数据进行压缩,减少写读数据量;

  • 减少不必要的排序:并不是所有类型的Reduce需要的数据都是需要排序的,排序这个nb的过程如果不需要最好还是不要的好;

  • 内存化:Shuffle的数据不放在磁盘而是尽量放在内存中,除非逼不得已往磁盘上放;当然了如果有性能和内存相当的第三方存储系统,那放在第三方存储系统上也是很好的;这个是个大招;

  • 网络框架:netty的性能据说要占优了;

  • 本节点上的数据不走网络框架:对于本节点上的Map输出,Reduce直接去读吧,不需要绕道网络框架。

Spark Shuffle后续优化方向

Spark作为MapReduce的进阶架构,对于Shuffle过程已经是优化了的,特别是对于那些具有争议的步骤已经做了优化,但是Spark的Shuffle对于我们来说在一些方面还是需要优化的。

  • 压缩:对数据进行压缩,减少写读数据量;

  • 内存化:Spark历史版本中是有这样设计的:Map写数据先把数据全部写到内存中,写完之后再把数据刷到磁盘上;考虑内存是紧缺资源,后来修改成把数据直接写到磁盘了;对于具有较大内存的集群来讲,还是尽量地往内存上写吧,内存放不下了再放磁盘。

#面试题##大数据开发##大数据#
全部评论
写的真好!
1 回复 分享
发布于 2022-08-24 20:39 江苏
多谢楼主精辟的总结
点赞 回复 分享
发布于 2022-08-08 22:38
点赞 回复 分享
发布于 2022-08-09 00:13
点赞 回复 分享
发布于 2022-08-09 00:14
请问楼主帖子里的Spark是哪个版本呀
点赞 回复 分享
发布于 2022-08-18 16:55 浙江

相关推荐

我即大橘:耐泡王
点赞 评论 收藏
分享
09-30 12:39
门头沟学院 C++
点赞 评论 收藏
分享
17 68 评论
分享
牛客网
牛客企业服务