Linux epoll源码剖析
Linux epoll源码剖析
linux内核版本:2.6.34
在读epoll源码前,需要先了解的知识点:
- 等待队列
- 文件系统(主要是进程的打开文件描述符表以及struct file)
- poll机制
- 资源注册监听poll() -> poll_wait(struct file *, wait_queue_t *, poll_table *pt) -> pt->qproc(struct file *, wait_queue_t *, poll_table *)
- 资源就绪通知callback_function(wait_queue_t *, unsigned mode, int sync, void *key)
- epoll主要数据结构
- 一个epoll实例对应一个struct eventpoll(在用户空间以epollfd指向)
- 一个监听事件对应一个struct epitem(epoll_ctl()操作的就是epitem)
先引用一下《追踪Linux Tcp/Ip代码运行:基于2.6内核》中的一段话:
试想一下,程序员在编写程序时是先定义结构体还是先编写函数?答案可能有两种:第一种是先编写函数,根据函数的过程来产生结构体的需求从而有了结构体的定义;第二种是按照协议规定,如TCP头部和IP头部结构体的定义,这些是协议规定的结构体,因而结构体定义在先,函数编写在后。两种答案虽然相反,可是深入思考一下协议的由来也是经过实践总结而来的,从而得到了从实践到理论的结论。
有时我们需要站在程序员的角度来理解结构体的作用和定义,逆向推理结构体是因何产生、因何而用,这种方式不但提高了理解、阅读代码的水平,更能增强逻辑思维的推理能力,进而面对任意一段代码的时候从容不迫而游刃有余。
Structures
/* * This structure is stored inside the "private_data" member of the file * structure and rapresent the main data sructure for the eventpoll * interface. */ struct eventpoll { /* Protect the this structure access */ spinlock_t lock; /* * This mutex is used to ensure that files are not removed * while epoll is using them. This is held during the event * collection loop, the file cleanup path, the epoll file exit * code and the ctl operations. */ struct mutex mtx; /* Wait queue used by sys_epoll_wait() */ /* 阻塞在epoll_wait()当前epoll实例的用户被链接到这个等待队列 */ wait_queue_head_t wq; /* Wait queue used by file->poll() */ /* epoll文件也可以被epoll_wait() */ wait_queue_head_t poll_wait; /* List of ready file descriptors */ /* 已经ready的epitem的链表 */ struct list_head rdllist; /* RB tree root used to store monitored fd structs */ /* 存储epitem */ struct rb_root rbr; /* * This is a single linked list that chains all the "struct epitem" that * happened while transfering ready events to userspace w/out * holding ->lock. */ /* 见ep_poll_callback()以及ep_scan_ready_list()中的注释 */ struct epitem *ovflist; /* The user that created the eventpoll descriptor */ /* 创建当前epoll实例的用户 */ struct user_struct *user; }; /* * Each file descriptor added to the eventpoll interface will * have an entry of this type linked to the "rbr" RB tree. */ struct epitem { /* RB tree node used to link this structure to the eventpoll RB tree */ /* eventpoll内部的红黑树的挂载点 */ struct rb_node rbn; /* List header used to link this structure to the eventpoll ready list */ /* 所有已经ready的epitem都会被挂载到eventpoll的rdllist中 */ struct list_head rdllink; /* * Works together "struct eventpoll"->ovflist in keeping the * single linked chain of items. */ /* 配合eventpoll->ovflist使用 */ struct epitem *next; /* The file descriptor information this item refers to */ /* * 作为evetnpoll内部的红黑树节点的key */ struct epoll_filefd ffd; /* Number of active wait queue attached to poll operations */ /* 监听队列挂载数 */ /* 难道一个epitem还能同时挂载到多个监听队列? */ int nwait; /* List containing poll wait queues */ /* 链接当前epitem对应的eppoll_entry结构 */ struct list_head pwqlist; /* The "container" of this item */ /* 关联当前epitem所属的epollevent */ struct eventpoll *ep; /* List header used to link this item to the "struct file" items list */ /* 与所监听的struct file进行链接 */ struct list_head fllink; /* The structure that describe the interested events and the source fd */ /* 通过epoll_ctl从用户空间传过来的数据,表示当前epitem关心的events */ struct epoll_event event; }; struct epoll_filefd { struct file *file; int fd; }; struct epoll_event { __u32 events; __u64 data; }; /* Wrapper struct used by poll queueing */ struct ep_pqueue { poll_table pt; struct epitem *epi; }; /* * structures and helpers for f_op->poll implementations */ typedef void (*poll_queue_proc)(struct file *, wait_queue_head_t *, struct poll_table_struct *); typedef struct poll_table_struct { poll_queue_proc qproc; unsigned long key; } poll_table; /* Wait structure used by the poll hooks */ /* 挂载到资源文件监听队列中的钩子结构 */ struct eppoll_entry { /* List header used to link this structure to the "struct epitem" */ /* 与其关联的epitem进行链接 */ struct list_head llink; /* The "base" pointer is set to the container "struct epitem" */ /* 指向对应的epitem结构 */ /* * 既然llink字段已经与对应的epitem结构进行了链接,为什么还需要 * 一个base指针指向对应的epitem??? */ struct epitem *base; /* * Wait queue item that will be linked to the target file wait * queue head. */ /* 挂载到资源文件监听队列的节点 */ wait_queue_t wait; /* The wait queue head that linked the "wait" wait queue item */ /* 资源监听队列队列头 */ wait_queue_head_t *whead; }; /* Used by the ep_send_events() function as callback private data */ struct ep_send_events_data { int maxevents; struct epoll_event __user *events; };
调用链:
sys_epoll_create() -> sys_epoll_create1() -> ep_alloc() -> anon_inode_getfd() sys_epoll_ctl(EPOLL_CTL_ADD) -> ep_insert() -> f_op->poll() -> poll_wait() -> ep_ptable_queue_proc() -> ep_rbtree_insert() -> wake_up sys_epoll_ctl(EPOLL_CTL_DEL) -> ep_remove() -> ep_unregister_pollwait() -> ep_erase() sys_epoll_ctl(EPOLL_CTL_MOD) -> ep_modify() -> f_op->poll() -> wake_up sys_epoll_wait() -> ep_poll() -> block -> ep_send_events() -> ep_scan_ready_list() -> ep_send_events_proc() -> wake_up ep_poll_callback() -> wake_up
epoll_create()
SYSCALL_DEFINE1(epoll_create, int, size) { if (size <= 0) return -EINVAL; /* 调用sys_epoll_create1()执行真正的epoll实例创建 */ return sys_epoll_create1(0); } /* * Open an eventpoll file descriptor. */ SYSCALL_DEFINE1(epoll_create1, int, flags) { int error; struct eventpoll *ep = NULL; /* Check the EPOLL_* constant for consistency. */ BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); /* 只关心EPOLL_CLOEXEC标志 */ if (flags & ~EPOLL_CLOEXEC) return -EINVAL; /* * Create the internal data structure ("struct eventpoll"). */ /* 分配并初始化一个eventpoll结构体 */ error = ep_alloc(&ep); if (error < 0) return error; /* * Creates all the items needed to setup an eventpoll file. That is, * a file structure and a free file descriptor. */ /* * 从anon_inode_mnt文件系统中分配一个(inode, dentry, file)三元组,然后 * 将file映射到文件描述符并安装到当前进程的文件描述符表fdtable中 * * anon_inode_mnt文件系统不存在磁盘映像,类似于socket没有一个真实的磁盘 * 文件与其对应一样。从这个匿名文件系统中分配的文件主要用于将资源映射到 * 文件描述符... * * 分配file结构之后将eventpoll挂载到它的private_data成员上,以便能够通 * 过文件描述符获得这个eventpoll * * file支持的操作由eventpoll_fops指出,可以看到它只支持release与poll, * 其中release()在file析构时析构并释放掉挂载到其上的eventpoll结构 */ error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep, O_RDWR | (flags & O_CLOEXEC)); if (error < 0) ep_free(ep); return error; } static int ep_alloc(struct eventpoll **pep) { int error; struct user_struct *user; struct eventpoll *ep; /* 获取当前用户上下文的用户信息 */ user = get_current_user(); error = -ENOMEM; /* 调用kmalloc,分配一个eventpoll结构体的空间 */ ep = kzalloc(sizeof(*ep), GFP_KERNEL); if (unlikely(!ep)) goto free_uid; /* 初始化 */ spin_lock_init(&ep->lock); mutex_init(&ep->mtx); init_waitqueue_head(&ep->wq); init_waitqueue_head(&ep->poll_wait); INIT_LIST_HEAD(&ep->rdllist); /* 一颗空的红黑树 */ ep->rbr = RB_ROOT; /* 注意 */ ep->ovflist = EP_UNACTIVE_PTR; ep->user = user; *pep = ep; return 0; free_uid: free_uid(user); return error; }
epoll_ctl()
/* * The following function implements the controller interface for * the eventpoll file that enables the insertion/removal/change of * file descriptors inside the interest set. */ SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, struct epoll_event __user *, event) { int error; struct file *file, *tfile; struct eventpoll *ep; struct epitem *epi; struct epoll_event epds; error = -EFAULT; /* 参数验证,并将epoll_event从用户空间拷贝到内核空间 */ if (ep_op_has_event(op) && copy_from_user(&epds, event, sizeof(struct epoll_event))) goto error_return; /* Get the "struct file *" for the eventpoll file */ error = -EBADF; /* 获取eventpoll文件描述符对应的struct file结构 */ file = fget(epfd); if (!file) goto error_return; /* Get the "struct file *" for the target file */ /* 获取需要被监听的文件描述符对应的struct file结构 */ tfile = fget(fd); if (!tfile) goto error_fput; /* The target file descriptor must support poll */ error = -EPERM; /* 需要被监听的文件必须支持poll() */ if (!tfile->f_op || !tfile->f_op->poll) goto error_tgt_fput; /* * We have to check that the file structure underneath the file descriptor * the user passed to us _is_ an eventpoll file. And also we do not permit * adding an epoll file descriptor inside itself. */ error = -EINVAL; /* * 1. epoll实例不能监听自己,不然事件发生的时候会形成通知死循环... * 2. 验证epfd指向的文件是否是epoll文件,其实内核好多文件验证都是 * 根据文件的操作集来判断的... */ if (file == tfile || !is_file_epoll(file)) goto error_tgt_fput; /* * At this point it is safe to assume that the "private_data" contains * our own data structure. */ /* 取出挂载到epoll文件中的eventpoll */ ep = file->private_data; /* mutex加锁:保护epitem,防止持有epitem的时候,它被异步删除 */ mutex_lock(&ep->mtx); /* * Try to lookup the file inside our RB tree, Since we grabbed "mtx" * above, we can be sure to be able to use the item looked up by * ep_find() till we release the mutex. */ /* * eventpoll用一颗红黑树来存储监听事件epitem, * 并且以(file, fd)二元组作为key * * ep_find()执行红黑树的二叉搜索,寻找(file, fd)对应的监听事件epitem */ epi = ep_find(ep, tfile, fd); error = -EINVAL; /* 执行具体操作op */ /* 注意哦:ep_insert()、ep_remove()、ep_modify()函数调用链都在mtx锁之下 */ switch (op) { case EPOLL_CTL_ADD: if (!epi) { /* epoll_wait()总是监听POLLERR和POLLHUP */ epds.events |= POLLERR | POLLHUP; error = ep_insert(ep, &epds, tfile, fd); } else error = -EEXIST; break; case EPOLL_CTL_DEL: if (epi) error = ep_remove(ep, epi); else error = -ENOENT; break; case EPOLL_CTL_MOD: if (epi) { /* epoll_wait()总是监听POLLERR和POLLHUP */ epds.events |= POLLERR | POLLHUP; error = ep_modify(ep, epi, &epds); } else error = -ENOENT; break; } mutex_unlock(&ep->mtx); error_tgt_fput: fput(tfile); error_fput: fput(file); error_return: return error; } /* * Search the file inside the eventpoll tree. The RB tree operations * are protected by the "mtx" mutex, and ep_find() must be called with * "mtx" held. */ static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) { int kcmp; struct rb_node *rbp; struct epitem *epi, *epir = NULL; struct epoll_filefd ffd; /* 使用epoll_filefd结构体封装(file, fd)二元组而形成key */ ep_set_ffd(&ffd, file, fd); /* 二叉搜索,寻找监听事件epitem */ for (rbp = ep->rbr.rb_node; rbp; ) { epi = rb_entry(rbp, struct epitem, rbn); kcmp = ep_cmp_ffd(&ffd, &epi->ffd); if (kcmp > 0) rbp = rbp->rb_right; else if (kcmp < 0) rbp = rbp->rb_left; else { epir = epi; break; } } return epir; } /* * Must be called with "mtx" held. */ static int ep_insert(struct eventpoll *ep, struct epoll_event *event, struct file *tfile, int fd) { int error, revents, pwake = 0; unsigned long flags; struct epitem *epi; struct ep_pqueue epq; /* 用户资源限制验证 */ if (unlikely(atomic_read(&ep->user->epoll_watches) >= max_user_watches)) return -ENOSPC; /* 从slab中分配一个epitem */ if (!(epi = kmem_***_alloc(epi_***, GFP_KERNEL))) return -ENOMEM; /* Item initialization follow here ... */ /* 初始化刚刚分配的epitem */ INIT_LIST_HEAD(&epi->rdllink); INIT_LIST_HEAD(&epi->fllink); INIT_LIST_HEAD(&epi->pwqlist); epi->ep = ep; ep_set_ffd(&epi->ffd, tfile, fd); epi->event = *event; epi->nwait = 0; /* 注意 */ epi->next = EP_UNACTIVE_PTR; /* Initialize the poll table using the queue callback */ /* * 注意: * epitem与poll_table被封装在了一个结构体中,以便之后向 * 资源注册监听的时候,能够用poll_table得到对应的epitem */ /* 将epitem挂载到这个ep_pqueue结构体中 */ epq.epi = epi; /* * 初始化ep_pqueue中的poll_table: * 1. 设置监听注册函数为ep_ptable_queue_proc * 2. 设置想要监听的事件为所有事件 * * 小心,很多博客甚至源码原注释都将监听注册函数叫做回调函数... * 其实它根本就没有任何信息回调,所以别被误导... */ init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); /* * Attach the item to the poll hooks and get current event bits. * We can safely use the file* here because its usage count has * been increased by the caller of this function. Note that after * this operation completes, the poll callback can start hitting * the new item. */ /* NOTE THAT: * 为了更舒服的阅读,这里的细节完全没必要了解... * 只需要知道这个调用最终做了什么事情就行... */ /* * 只有管道、套接字这些特殊设备文件才支持poll(),而在ext2/ext3/ext4 * 这些块设备上的文件不支持poll(),因为块设备文件不支持阻塞读啊... * 有数据就返回数据,没有数据就返回0表示end-of-file... * * 我们以ipv4_tcp套接字举例: * 1. sys_socketcall() -> sys_socket() -> sock_create() -> * __sock_create() -> net_families[PF_INET]->create() ==> * inet_create(): socket->ops = &inet_stream_ops * 2. sys_socketcall() -> sys_socket() -> sock_map_fd() -> * sock_alloc_file() -> alloc_file(): * file->f_op = &socket_file_ops * 当使用socket(PF_INET, SOCK_STREAM, 0)创建套接字时,根据协议类型最终 * 设置socket的操作集ops为tcp_stream_ops,其中poll ==> tcp_poll, * 在之后将socket与文件进行关联时,设置文件操作集f_op为socket_file_ops, * 其中poll ==> sock_poll * * 3. [下面的代码] tfile->f_op->poll() ==> * socket_file_ops.poll() ==> sock_poll() -> * socket->ops->poll() ==> tcp_poll() -> * sock_poll_wait() -> poll_wait() * 当我们对socket对应的文件进行poll()时,会调用socket特定的poll()操作, * 也就是以第3点所示的调用链那样最终调用poll_wait() * * 4. [下面的代码] poll_wait() -> epq.pt.qproc() ==> * ep_ptable_queue_proc() * 在poll_wait()中会调用我们传给它的poll_table中的proc函数,也就是我们 * 上一步在init_poll_funcptr()中设置的ep_ptable_queue_proc函数 * * 所以说了这么多,也就第4步是关键... * 内核被设计得这么复杂的原因是为了能有更好的扩展性... */ /* * 最终做的事: * 就是将eventpoll中的监听事件epitem通过eppoll_entry的封装挂载到资源文件 * 的监听队列。之后资源文件事件就绪,就会调用队列中所有节点的回调函数, * 从而通知监听者... */ /* * f_op->poll()还会返回文件当前的文件状态 */ revents = tfile->f_op->poll(tfile, &epq.pt); /* * We have to check if something went wrong during the poll wait queue * install process. Namely an allocation for a wait queue failed due * high memory pressure. */ error = -ENOMEM; if (epi->nwait < 0) goto error_unregister; /* Add the current item to the list of active epoll hook for this file */ /* spinlock加锁:保护struct file的访问 */ spin_lock(&tfile->f_lock); /* * 将epitem与它需要监听的文件链接起来 * struct file结构中的f_ep_links字段链接了所有需要监听它的epitem */ list_add_tail(&epi->fllink, &tfile->f_ep_links); spin_unlock(&tfile->f_lock); /* * Add the current item to the RB tree. All RB tree operations are * protected by "mtx", and ep_insert() is called with "mtx" held. */ /* 将epitem添加到eventpoll的红黑树当中 */ /* * 来看一下为什么不需要ep->lock加锁: * 红黑树节点增删操作: * 1. epoll_ctl() -> ep_insert() * 2. epoll_tcl() -> ep_remove() * 3. eventpoll_release_file() -> ep_remove() * 这三个函数在修改红黑树前都加了ep->mtx锁,所以不必再加ep->lock锁 */ ep_rbtree_insert(ep, epi); /* We have to drop the new item inside our item list to keep track of it */ /* spinlock加锁:保护eventpoll的访问 */ spin_lock_irqsave(&ep->lock, flags); /* If the file is already "ready" we drop it inside the ready list */ /* * 如果资源文件的当前状态revents中已经有了我们所关心的events的话, * 就将当前epitem链接到eventpoll就绪队列 */ /* * epitem可能已经被异步ep_poll_callback()调用添加到了eventpoll中的 * 就绪队列里...这就是为什么需要!ep_is_linked(&epi->rdlink)的原因 */ if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { list_add_tail(&epi->rdllink, &ep->rdllist); /* Notify waiting tasks that events are available */ /* 唤醒epoll_wait()当前epoll实例的用户 */ if (waitqueue_active(&ep->wq)) wake_up_locked(&ep->wq); /* 当前epoll文件已就绪 */ if (waitqueue_active(&ep->poll_wait)) pwake++; } spin_unlock_irqrestore(&ep->lock, flags); /* 更新当前用户的监听事件数量 */ atomic_inc(&ep->user->epoll_watches); /* We have to call this outside the lock */ if (pwake) ep_poll_safewake(&ep->poll_wait); return 0; error_unregister: ep_unregister_pollwait(ep, epi); /* * We need to do this because an event could have been arrived on some * allocated wait queue. Note that we don't care about the ep->ovflist * list, since that is used/cleaned only inside a section bound by "mtx". * And ep_insert() is called with "mtx" held. */ spin_lock_irqsave(&ep->lock, flags); if (ep_is_linked(&epi->rdllink)) list_del_init(&epi->rdllink); spin_unlock_irqrestore(&ep->lock, flags); kmem_***_free(epi_***, epi); return error; } static inline void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p) { if (p && wait_address) p->qproc(filp, wait_address, p); } /* * This is the callback that is used to add our wait queue to the * target file wakeup lists. */ /** * ep_ptable_queue_proc - 将epitem挂载到资源文件的监听队列 * @file: 被监听的资源文件 * @whead: 被监听的资源文件的等待队列头 * @pt: 在ep_insert()中设置的poll_tbale */ static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, poll_table *pt) { /* 获取epitem */ struct epitem *epi = ep_item_from_epqueue(pt); struct eppoll_entry *pwq; /* 从slab分配一个eppoll_entry结构,然后进行相应的初始化 */ if (epi->nwait >= 0 && (pwq = kmem_***_alloc(pwq_***, GFP_KERNEL))) { /* * 初始化一个等待队列节点,其中唤醒函数设置为ep_poll_callback * * 重点!!!: * 唤醒回调函数为ep_poll_callback!!! */ init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); /* 还要保存资源文件监听队列的队列头whead */ pwq->whead = whead; pwq->base = epi; /* 将eppoll_entry挂载到资源文件的监听队列中 */ add_wait_queue(whead, &pwq->wait); /* * 将eppoll_entry与对应的epitem进行关联... * 虽然使用链表进行的链接,但是epitem与eppoll_entry是1:1关系 */ /* FIXME:可能我对这里有误解,欢迎大家指正 */ list_add_tail(&pwq->llink, &epi->pwqlist); /* 增加等待计数 */ epi->nwait++; } else { /* We have to signal that an error occurred */ epi->nwait = -1; } } /* * Removes a "struct epitem" from the eventpoll RB tree and deallocates * all the associated resources. Must be called with "mtx" held. */ static int ep_remove(struct eventpoll *ep, struct epitem *epi) { unsigned long flags; struct file *file = epi->ffd.file; /* * Removes poll wait queue hooks. We _have_ to do this without holding * the "ep->lock" otherwise a deadlock might occur. This because of the * sequence of the lock acquisition. Here we do "ep->lock" then the wait * queue head lock when unregistering the wait queue. The wakeup callback * will run by holding the wait queue head lock and will call our callback * that will try to get "ep->lock". */ /* 卸载epitem在资源文件上的监听 */ ep_unregister_pollwait(ep, epi); /* Remove the current item from the list of epoll hooks */ /* spinlock加锁:保护struct file的访问 */ spin_lock(&file->f_lock); /* 将epitem与所监听的文件解除关联 */ if (ep_is_linked(&epi->fllink)) list_del_init(&epi->fllink); spin_unlock(&file->f_lock); /* 从eventpoll的红黑树中删除节点,不需要ep->lock加锁 */ rb_erase(&epi->rbn, &ep->rbr); /* spinlock加锁:保护eventpoll的访问 */ spin_lock_irqsave(&ep->lock, flags); /* 将epitem从eventpoll中的就绪队列中卸载 */ /* * epitem挂载在ep->ovflist只能出现在epoll_wait() -> ep_poll() * -> ep_scan_ready_list()中的ep->mtx临界区内,所以这里不用判断 * epi->next != NULL */ if (ep_is_linked(&epi->rdllink)) list_del_init(&epi->rdllink); spin_unlock_irqrestore(&ep->lock, flags); /* At this point it is safe to free the eventpoll item */ /* 释放节点 */ kmem_***_free(epi_***, epi); /* 更新用户的监听事件数量 */ atomic_dec(&ep->user->epoll_watches); return 0; } /* * This function unregisters poll callbacks from the associated file * descriptor. Must be called with "mtx" held (or "epmutex" if called from * ep_free). */ /* * 卸载监听事件:从资源文件的监听队列中删除、释放epitem关联的eppoll_entry */ static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) { /* epi->pwdlist将epitem与对应的eppoll_entry进行了关联 */ struct list_head *lsthead = &epi->pwqlist; struct eppoll_entry *pwq; while (!list_empty(lsthead)) { /* 获取eppoll_entry结构 */ pwq = list_first_entry(lsthead, struct eppoll_entry, llink); /* 将eppoll_entry与epitem解除关联 */ list_del(&pwq->llink); /* 从资源文件的监听队列中卸载 */ remove_wait_queue(pwq->whead, &pwq->wait); /* 释放节点 */ kmem_***_free(pwq_***, pwq); } } /* * Modify the interest event mask by dropping an event if the new mask * has a match in the current file status. Must be called with "mtx" held. */ static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) { int pwake = 0; unsigned int revents; /* * Set the new event interest mask before calling f_op->poll(); * otherwise we might miss an event that happens between the * f_op->poll() call and the new event set registering. */ /* 修改epoll_event */ epi->event.events = event->events; epi->event.data = event->data; /* protected by mtx */ /* * Get current event bits. We can safely use the file* here because * its usage count has been increased by the caller of this function. */ /* * 因为修改了监听的events,因此需要重新获得资源的当前状态,然后判断资源的 * 当前状态revents中是否包含了我们新关心的events */ revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); /* * If the item is "hot" and it is not registered inside the ready * list, push it inside. */ /* 如果资源的当前状态包含了我们新关心的events,就绪,并唤醒相应用户 */ if (revents & event->events) { /* spinlock加锁:保护eventpoll的访问 */ spin_lock_irq(&ep->lock); /* * epitem可能已经被异步ep_poll_callback()调用添加到了eventpoll中的 * 就绪队列里...这就是为什么需要!ep_is_linked(&epi->rdlink)的原因 */ if (!ep_is_linked(&epi->rdllink)) { list_add_tail(&epi->rdllink, &ep->rdllist); /* Notify waiting tasks that events are available */ if (waitqueue_active(&ep->wq)) wake_up_locked(&ep->wq); if (waitqueue_active(&ep->poll_wait)) pwake++; } spin_unlock_irq(&ep->lock); } /* We have to call this outside the lock */ if (pwake) ep_poll_safewake(&ep->poll_wait); return 0; }
epoll_wait()
/* * Implement the event wait interface for the eventpoll file. It is the kernel * part of the user space epoll_wait(2). */ SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, int, maxevents, int, timeout) { int error; struct file *file; struct eventpoll *ep; /* The maximum number of event must be greater than zero */ /* 参数验证 */ if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) return -EINVAL; /* Verify that the area passed by the user is writeable */ /* 验证events数组区域,当前用户是否能够访问 */ if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { error = -EFAULT; goto error_return; } /* Get the "struct file *" for the eventpoll file */ error = -EBADF; /* 获取eventpoll文件描述符对应的struct file结构 */ file = fget(epfd); if (!file) goto error_return; /* * We have to check that the file structure underneath the fd * the user passed to us _is_ an eventpoll file. */ error = -EINVAL; /* 验证epfd指向的文件是否是epoll文件 */ if (!is_file_epoll(file)) goto error_fput; /* * At this point it is safe to assume that the "private_data" contains * our own data structure. */ /* 取出挂载到epoll文件中的eventpoll */ ep = file->private_data; /* Time to fish for events ... */ /* 调用ep_poll()等待事件的到来 */ error = ep_poll(ep, events, maxevents, timeout); error_fput: fput(file); error_return: return error; } /* * 唤醒发生在: * 1. ep_insert() * 2. ep_modify() * 3. ep_poll_callback() * 3. ep_poll() -> ep_send_events() -> ep_scan_ready_list() */ static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, int maxevents, long timeout) { int res, eavail; unsigned long flags; long jtimeout; wait_queue_t wait; /* * Calculate the timeout by checking for the "infinite" value (-1) * and the overflow condition. The passed timeout is in milliseconds, * that why (t * HZ) / 1000. */ /* 处理睡眠时间:将毫秒数转化为HZ */ jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ? MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000; retry: /* spinlock加锁:保护eventpoll的访问 */ spin_lock_irqsave(&ep->lock, flags); res = 0; /* 就绪队列为空,说明还没有任何events就绪 */ if (list_empty(&ep->rdllist)) { /* * We don't have any available event to return to the caller. * We need to sleep here, and we will be wake up by * ep_poll_callback() when events will become available. */ /* 初始化等待队列节点,设置等待状态为互斥等待 */ init_waitqueue_entry(&wait, current); wait.flags |= WQ_FLAG_EXCLUSIVE; /* 将刚刚初始化的等待队列节点挂载到eventpoll中的等待队列 */ __add_wait_queue(&ep->wq, &wait); for (;;) { /* * We don't want to sleep if the ep_poll_callback() sends us * a wakeup in between. That's why we set the task state * to TASK_INTERRUPTIBLE before doing the checks. */ /* 设置程序运行状态为可中断阻塞,因为我们希望能够接收到 * ep_insert()、ep_modify()、ep_poll_callback()的唤醒 */ set_current_state(TASK_INTERRUPTIBLE); /* events就绪或者超时,跳出循环 */ if (!list_empty(&ep->rdllist) || !jtimeout) break; /* 出现未决信号,设置返回值为-EINTR并跳出循环 */ if (signal_pending(current)) { res = -EINTR; break; } spin_unlock_irqrestore(&ep->lock, flags); /* 休眠...等待超时或者被就绪资源唤醒 */ jtimeout = schedule_timeout(jtimeout); spin_lock_irqsave(&ep->lock, flags); } /* 从等待队列中卸载 */ __remove_wait_queue(&ep->wq, &wait); /* 恢复程序运行状态 */ set_current_state(TASK_RUNNING); } /* Is it worth to try to dig for events ? */ /* 判断是否有资源就绪 */ eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; spin_unlock_irqrestore(&ep->lock, flags); /* * Try to transfer events to user space. In case we get 0 events and * there's still timeout left over, we go trying again in search of * more luck. */ /* * 如果没有发生中断(!res)、有资源就绪(eavail),我们就将就绪的events向用户空间 * 交付(ep_send_events()) * 如果ep_send_events()向用户交付的事件数为0,并且还有超时时间剩余(jtimeout), * 那么我们retry,期待不要空手而归... */ if (!res && eavail && !(res = ep_send_events(ep, events, maxevents)) && jtimeout) goto retry; return res; } static int ep_send_events(struct eventpoll *ep, struct epoll_event __user *events, int maxevents) { struct ep_send_events_data esed; /* 注意:将events数组与event最大接受数maxevents封装到了一起 */ esed.maxevents = maxevents; esed.events = events; /* 注意:events交付例程指定为ep_send_events_proc */ return ep_scan_ready_list(ep, ep_send_events_proc, &esed); } /** * ep_scan_ready_list - Scans the ready list in a way that makes possible for * the scan code, to call f_op->poll(). Also allows for * O(NumReady) performance. * * @ep: Pointer to the epoll private data structure. * @sproc: Pointer to the scan callback. * @priv: Private opaque data passed to the @sproc callback. * * Returns: The same integer error code returned by the @sproc callback. */ static int ep_scan_ready_list(struct eventpoll *ep, int (*sproc)(struct eventpoll *, struct list_head *, void *), void *priv) { int error, pwake = 0; unsigned long flags; struct epitem *epi, *nepi; /* 初始化一个链表 */ LIST_HEAD(txlist); /* * We need to lock this because we could be hit by * eventpoll_release_file() and epoll_ctl(). */ /* mutex加锁 */ mutex_lock(&ep->mtx); /* * Steal the ready list, and re-init the original one to the * empty list. Also, set ep->ovflist to NULL so that events * happening while looping w/out locks, are not lost. We cannot * have the poll callback to queue directly on ep->rdllist, * because we want the "sproc" callback to be able to do it * in a lockless way. */ /* spinlock加锁:保护eventpoll的访问 */ spin_lock_irqsave(&ep->lock, flags); /* * 将eventpoll就绪队列中的所有节点全部splice到链表txlist上, * 之后eventpoll就绪队列为空 */ list_splice_init(&ep->rdllist, &txlist); /* 设置eventpoll.ovflist,使得接下来新就绪的events被挂载到 * eventpoll.ovflist而不是就绪队列 */ ep->ovflist = NULL; spin_unlock_irqrestore(&ep->lock, flags); /* * Now call the callback function. */ /* * sproc ==> ep_send_events_proc * priv封装了events数组与events最大接受数maxevents * * 注意:ep_send_events_proc()只在ep->mtx临界区内 */ error = (*sproc)(ep, &txlist, priv); /* spinlock加锁:保护eventpoll的访问 */ spin_lock_irqsave(&ep->lock, flags); /* * During the time we spent inside the "sproc" callback, some * other events might have been queued by the poll callback. * We re-insert them inside the main ready-list here. */ /* * 我们在调用ep_send_events_proc()将就绪队列中的事件交付 * 给用户的期间,新就绪的events被挂载到eventpoll.ovflist * 所以我们需要遍历eventpoll.ovflist将所有已就绪的epitem * 重新挂载到就绪队列中,等待下一次epoll_wait()进行交付... */ for (nepi = ep->ovflist; (epi = nepi) != NULL; nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { /* * We need to check if the item is already in the list. * During the "sproc" callback execution time, items are * queued into ->ovflist but the "txlist" might already * contain them, and the list_splice() below takes care of them. */ /* ep_is_linked(&epi->rdlink)的原因见上面的原注释... */ if (!ep_is_linked(&epi->rdllink)) list_add_tail(&epi->rdllink, &ep->rdllist); } /* * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after * releasing the lock, events will be queued in the normal way inside * ep->rdllist. */ /* 恢复eventpoll.ovflist,使得接下来新就绪的events被挂载到就绪队列 * 而不是ovflist */ ep->ovflist = EP_UNACTIVE_PTR; /* * Quickly re-inject items left on "txlist". */ /* 将调用ep_send_events_proc()之后剩余的未交付的epitem重新splice到 * eventpoll的就绪队列上 */ list_splice(&txlist, &ep->rdllist); /* * 注意到epoll_wait()中,将wait_queue_t的等待状态设置为互斥等待,因此 * 每次被唤醒的只有一个节点。现在我们已经将eventpoll中就绪队列里的事件 * 尽量向用户交付了,但是在交付时,可能没有交付完全(1.交付过程中出现了 * 错误 2.使用了LT模式),也有可能在过程中又发生了新的事件。也就是这次 * epoll_wait()调用后,还剩下一些就绪资源,那么我们再次唤醒一个等待节点 * 让别的用户也享用一下资源... * * 从这里已经可以看出内核对于epoll惊群的解决方案:ET模式: * 1. 每次只唤醒一个节点 * 2. 事件交付后不再将事件重新挂载到就绪队列 */ if (!list_empty(&ep->rdllist)) { /* * Wake up (if active) both the eventpoll wait list and * the ->poll() wait list (delayed after we release the lock). */ /* 唤醒epoll_wait()当前epoll实例的用户 */ if (waitqueue_active(&ep->wq)) wake_up_locked(&ep->wq); /* 当前epoll文件已就绪 */ if (waitqueue_active(&ep->poll_wait)) pwake++; } spin_unlock_irqrestore(&ep->lock, flags); mutex_unlock(&ep->mtx); /* We have to call this outside the lock */ if (pwake) ep_poll_safewake(&ep->poll_wait); return error; } static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, void *priv) { struct ep_send_events_data *esed = priv; int eventcnt; unsigned int revents; struct epitem *epi; struct epoll_event __user *uevent; /* * We can loop without lock because we are passed a task private list. * Items cannot vanish during the loop because ep_scan_ready_list() is * holding "mtx" during this call. */ /* * 遍历head就绪队列 * * eventcnt记录已交付的events的数量 * uevent指向esed中封装的events数组,这个数组用于将已就绪events返回给用户 */ for (eventcnt = 0, uevent = esed->events; !list_empty(head) && eventcnt < esed->maxevents;) { epi = list_first_entry(head, struct epitem, rdllink); /* 将epitem从head就绪队列中卸载 */ list_del_init(&epi->rdllink); /* 从资源文件当前状态中提取出我们所关心的events */ revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & epi->event.events; /* * If the event mask intersect the caller-requested one, * deliver the event to userspace. Again, ep_scan_ready_list() * is holding "mtx", so no operations coming from userspace * can change the item. */ /* 如果有我们所关心的events发生 */ if (revents) { /* * 将events复制到用户空间 * * 若复制失败,那么就将该epitem重新添加到head就绪队列首,然后 * 返回已交付的events的数量,调用者 ==> ep_scan_ready_list() * 会重新将head就绪队列splice到eventpoll的就绪队列上,等待下次 * epoll_wait()->ep_poll()->ep_send_events()进行交付... */ if (__put_user(revents, &uevent->events) || __put_user(epi->event.data, &uevent->data)) { /* 复制失败了... */ list_add(&epi->rdllink, head); return eventcnt ? eventcnt : -EFAULT; } /* 更新已交付的event的数量 */ eventcnt++; /* 指向events数组中的下一元素 */ uevent++; if (epi->event.events & EPOLLONESHOT) epi->event.events &= EP_PRIVATE_BITS; else if (!(epi->event.events & EPOLLET)) { /* * If this file has been added with Level * Trigger mode, we need to insert back inside * the ready list, so that the next call to * epoll_wait() will check again the events * availability. At this point, noone can insert * into ep->rdllist besides us. The epoll_ctl() * callers are locked out by * ep_scan_ready_list() holding "mtx" and the * poll callback will queue them in ep->ovflist. */ /* * LT模式:只要资源满足某种状态,就向用户交付该events * ET模式:只有资源状态发生改变时,才向用户交付events * * 如果是LT模式,那么每次向用户交付events之后,再次把该epitem * 挂载到eventpoll中的就绪队列上,下一次epoll_wait()时不休眠 * 直接进入到ep_send_events_proc()中来,通过获取资源文件的最新 * 状态然后与我们关心的events比较: * 1. 如果资源状态还是满足我们关心的events(可能是资源又就绪了, * 也有可能是上次就绪的资源未消费完),那么还是把它重新挂载 * 到就绪队列并再次交付; * 2. 如果不再满足我们关心的events(上一次的就绪资源已经消费完 * 并且还没有再次就绪),那么将它从就绪队列上卸载之后可就不 * 再重新挂载了... * * 关于第2点,有博客讲可能会使这次epoll_wait()返回0空转一次, * 然而通过程序测试,发现并没有...让我们跟踪一下内核... * * e.g. * 假设我们的epoll实例中只监听了一个listen套接字,并且现在只来了 * 一个连接,那么epoll_wait()被唤醒然后向用户交付这个事件,然后 * 又把这个事件epitem重新挂载到了就绪队列,最后返回到用户空间... * 第二次epoll_wait()无休眠第一次进入到ep_send_events_proc()中来, * 然后出现了上述第2点描述的情况。因为eventpoll中只有一个节点, * 所以就绪队列遍历完毕,eventcnt为0,然后回退ep_send_events_proc() * -> ep_scan_ready_list() -> ep_send_events() -> ep_poll() * 哈哈!!现在可以去理解ep_poll()最后的注释了... */ list_add_tail(&epi->rdllink, &ep->rdllist); } } } return eventcnt; }
ep_poll_callback()
/* * This is the callback that is passed to the wait queue wakeup * machanism. It is called by the stored file descriptors when they * have events to report. */ /** * ep_poll_callback - 唤醒回调函数,这个函数将就绪的epitem链接到所属eventpoll中的 * 就绪队列,并唤醒监听者 * @wait: eppoll_entry.wait * @mode: * @key: 携带资源当前状态 */ static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) { int pwake = 0; unsigned long flags; /* 通过eppoll_entry中的wait获取对应的epitem */ struct epitem *epi = ep_item_from_wait(wait); /* 获取epitem所属的eventpoll */ struct eventpoll *ep = epi->ep; /* spinlock加锁:保护eventpoll的访问 */ /* * 注意:ep_poll_callback()中只用了spinlock,因为这个回调函数在资源就绪时,由 * 资源的中断处理程序所调用,而中断处理程序中不允许休眠,所以这里面的同步不能 * 使用可休眠锁mutex * * 因为没有ep->mtx加锁,所以感觉这里应该可能出现竞争条件,在ep_item_from_wait() * 获取epitem之后,这个epitem可能被异步删除... */ spin_lock_irqsave(&ep->lock, flags); /* * If the event mask does not contain any poll(2) event, we consider the * descriptor to be disabled. This condition is likely the effect of the * EPOLLONESHOT bit that disables the descriptor when an event is received, * until the next EPOLL_CTL_MOD will be issued. */ /* 如果我们想要监听的事件events为空,那么资源文件就绪时,nothing to do */ if (!(epi->event.events & ~EP_PRIVATE_BITS)) goto out_unlock; /* * Check the events coming with the callback. At this stage, not * every device reports the events in the "key" parameter of the * callback. We need to be able to handle both cases here, hence the * test for "key" != NULL before the event match test. */ /* 判断文件当前状态key中有没有我们关心的事件events */ if (key && !((unsigned long) key & epi->event.events)) goto out_unlock; /* * If we are trasfering events to userspace, we can hold no locks * (because we're accessing user memory, and because of linux f_op->poll() * semantics). All the events that happens during that period of time are * chained in ep->ovflist and requeued later on. */ /* * 异步调用ep_send_events_proc()将就绪队列中的事件交付给 * 用户的期间(也就是ep->ovflist != EP_UNACTIVE_PTR时), * 新就绪的events应该被挂载到eventpoll.ovflist */ /* FIXME:查了很多资料,没有查到到ovflist的具体作用,我认为ovflist完全是 * 冗余的设计...欢迎指正... */ if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { if (epi->next == EP_UNACTIVE_PTR) { epi->next = ep->ovflist; ep->ovflist = epi; } goto out_unlock; } /* If this file is already in the ready list we exit soon */ /* 如果epitem没有被挂载到所属eventpoll中的就绪队列,就将其添加到就绪队列尾 */ /* * 如果一个就绪事件被挂载到eventpoll中的就绪队列又没有被处理并卸载,那么当事件 * 再次就绪时不用再次挂载...这就是为什么需要!ep_is_linked(&epi->rdlink)的原因 */ if (!ep_is_linked(&epi->rdllink)) list_add_tail(&epi->rdllink, &ep->rdllist); /* * Wake up ( if active ) both the eventpoll wait list and the ->poll() * wait list. */ /* 唤醒epoll_wait()当前epoll实例的用户 */ if (waitqueue_active(&ep->wq)) wake_up_locked(&ep->wq); /* 当前epoll文件已就绪 */ if (waitqueue_active(&ep->poll_wait)) pwake++; out_unlock: spin_unlock_irqrestore(&ep->lock, flags); /* We have to call this outside the lock */ if (pwake) ep_poll_safewake(&ep->poll_wait); return 1; }
验证ET模式解决epoll惊群
// server.c #include <stdio.h> #include <string.h> #include <err.h> #include <errno.h> #include <pthread.h> #include <unistd.h> #include <sys/epoll.h> #include <sys/socket.h> #include <arpa/inet.h> #include <netinet/in.h> #define NR_THREAD 5 int listenfd, epollfd; static void *thrd_func(void *args) { int connfd, retval; socklen_t addrlen; struct sockaddr_in cliaddr; struct epoll_event revent; if ((retval = epoll_wait(epollfd, &revent, 1, -1)) == -1) err(-1, "thread: %ld: epoll_wait: %d", (long)pthread_self(), __LINE__); fprintf(stderr, "thread: %ld: epoll_wait() return %d\n", (long)pthread_self(), retval); addrlen = sizeof(struct sockaddr_in); while (accept(listenfd, (struct sockaddr *)&cliaddr, &addrlen) == -1) { if (errno == EAGAIN) { warn("thread: %ld: accept: %d", (long)pthread_self(), __LINE__); sleep(1); continue; } err(-1, "thread: %ld: epoll_wait: %d", (long)pthread_self(), __LINE__); } fprintf(stderr, "thread: %ld: accept a connection: %s:%d\n", (long)pthread_self(), inet_ntoa(cliaddr.sin_addr), ntohs(cliaddr.sin_port)); pthread_exit(NULL); } int main(int argc, char *argv[]) { int i; pthread_t threads[NR_THREAD]; struct sockaddr_in servaddr; struct epoll_event ev; if ((listenfd = socket(AF_INET, SOCK_STREAM | SOCK_NONBLOCK, 0)) == -1) err(-1, "socket: %d", __LINE__); memset(&servaddr, 0, sizeof(struct sockaddr_in)); servaddr.sin_family = AF_INET; servaddr.sin_addr.s_addr = htonl(INADDR_ANY); servaddr.sin_port = htons(10240); if (bind(listenfd, (struct sockaddr *)&servaddr, sizeof(struct sockaddr_in)) == -1) err(-1, "bind: %d", __LINE__); if (listen(listenfd, 0) == -1) err(-1, "listen: %d", __LINE__); if ((epollfd = epoll_create1(0)) == -1) err(-1, "epoll_create1: %d", __LINE__); ev.events = EPOLLIN; #ifdef ET ev.events |= EPOLLET; #endif ev.data.fd = listenfd; if (epoll_ctl(epollfd, EPOLL_CTL_ADD, listenfd, &ev) == -1) err(-1, "epoll_ctl: %d", __LINE__); for (i = 0; i != NR_THREAD; ++i) { if ((errno = pthread_create(&threads[i], NULL, &thrd_func, NULL)) != 0) err(-1, "pthread_create: %d", __LINE__); } for (i = 0; i != NR_THREAD; ++i) { if ((errno = pthread_join(threads[i], NULL)) != 0) err(-1, "pthread_join: %d", __LINE__); } return 0; }
server创建NR_THREAD个线程执行epoll_wait()监听listen套接字。这个程序没有任何实际意义,这种并发模型完全可以通过阻塞调用accept(),而如果使用多路转接还会造成不必要的性能浪费...见《Unix网络编程 卷1 套接字联网API》(30.6:TCP预先派生子进程服务器程序,accept无上锁保护)
// client.c #include <stdio.h> #include <string.h> #include <err.h> #include <errno.h> #include <sys/socket.h> #include <arpa/inet.h> #include <netinet/in.h> int main(int argc, char *argv[]) { int connfd; struct sockaddr_in servaddr; if ((connfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) err(-1, "socket: %d", __LINE__); memset(&servaddr, 0, sizeof(struct sockaddr_in)); servaddr.sin_family = AF_INET; servaddr.sin_addr.s_addr = inet_addr("127.0.0.1"); servaddr.sin_port = htons(10240); if (connect(connfd, (struct sockaddr *)&servaddr, sizeof(struct sockaddr_in)) == -1) err(-1, "connect: %d", __LINE__); fprintf(stderr, "ok\n"); return 0; }
client连接一下服务器就退出...(真刺激)
# 这里没有给出客户端的执行情况,可以看server的输出自行想象在哪个时间点启动的client [Asu@Zombie epoll]$ cc server.c -o server -lpthread [Asu@Zombie epoll]$ cc client.c -o client [Asu@Zombie epoll]$ ./server thread: 140478631536384: epoll_wait() return 1 thread: 140478656714496: epoll_wait() return 1 thread: 140478648321792: epoll_wait() return 1 thread: 140478631536384: accept a connection: 127.0.0.1:38976 thread: 140478656714496: accept: 32: Resource temporarily unavailable thread: 140478648321792: accept: 32: Resource temporarily unavailable thread: 140478639929088: epoll_wait() return 1 thread: 140478639929088: accept: 32: Resource temporarily unavailable thread: 140478639929088: accept: 32: Resource temporarily unavailable thread: 140478656714496: accept: 32: Resource temporarily unavailable thread: 140478648321792: accept: 32: Resource temporarily unavailable thread: 140478639929088: accept: 32: Resource temporarily unavailable thread: 140478648321792: accept: 32: Resource temporarily unavailable thread: 140478656714496: accept: 32: Resource temporarily unavailable thread: 140478665107200: epoll_wait() return 1 thread: 140478665107200: accept a connection: 127.0.0.1:38978 thread: 140478648321792: accept: 32: Resource temporarily unavailable thread: 140478656714496: accept: 32: Resource temporarily unavailable thread: 140478639929088: accept: 32: Resource temporarily unavailable thread: 140478656714496: accept: 32: Resource temporarily unavailable thread: 140478648321792: accept: 32: Resource temporarily unavailable thread: 140478639929088: accept: 32: Resource temporarily unavailable thread: 140478656714496: accept a connection: 127.0.0.1:38980 thread: 140478648321792: accept: 32: Resource temporarily unavailable thread: 140478639929088: accept: 32: Resource temporarily unavailable thread: 140478648321792: accept: 32:Resource temporarily unavailable thread: 140478639929088: accept: 32: Resource temporarily unavailable thread: 140478639929088: accept a connection: 127.0.0.1:38982 thread: 140478648321792: accept: 32: Resource temporarily unavailable thread: 140478648321792: accept: 32: Resource temporarily unavailable thread: 140478648321792: accept a connection: 127.0.0.1:38984 [Asu@Zombie epoll]$
# 注意:这里使用了-DET编译的server.c,也就是以EPOLLET模式监听listen套接字 # 可以看到完美解决了epoll惊群,但是ET模式还是有缺陷的...不安全... [Asu@Zombie epoll]$ cc server.c -o server -lpthread -DET [Asu@Zombie epoll]$ cc client.c -o client [Asu@Zombie epoll]$ ./server thread: 139991003125504: epoll_wait() return 1 thread: 139991003125504: accept a connection: 127.0.0.1:38990 thread: 139991011518208: epoll_wait() return 1 thread: 139991011518208: accept a connection: 127.0.0.1:38992 thread: 139991019910912: epoll_wait() return 1 thread: 139991019910912: accept a connection: 127.0.0.1:38994 thread: 139991028303616: epoll_wait() return 1 thread: 139991028303616: accept a connection: 127.0.0.1:38996 thread: 139991036696320: epoll_wait() return 1 thread: 139991036696320: accept a connection: 127.0.0.1:38998 [Asu@Zombie epoll]$
linux内核对于epoll惊群的解决方案就是wake up one,但是由于LT模式将epitem重新挂载到就绪队列,导致LT模式的epoll惊群没有被解决...
accept惊群的解决方案
/* * 早期linux内核没有解决accept惊群,所以需要用户自己来解决, * 解决方案是:每次accept前加锁,accept之后解锁,这样可以 * 确保任意时间点只有一个线程/进程阻塞在accept()上 * 现代linux内核解决了accept惊群,解决方案就是我们以下所做, * 只是它将锁保护内置在了accept()调用中... */ #include <stdio.h> #include <string.h> #include <err.h> #include <errno.h> #include <unistd.h> #include <pthread.h> #include <sys/socket.h> #include <arpa/inet.h> #include <netinet/in.h> #define NR_THREAD 5 int listenfd; pthread_mutex_t mtx; static void *thrd_func(void *args) { int connfd, retval; socklen_t addrlen; struct sockaddr_in cliaddr; int error_flg = -1; if ((errno = pthread_mutex_lock(&mtx)) != 0) err(-1, "thread: %ld: pthread_mutex_lock: %d", (long)pthread_self(), __LINE__); addrlen = sizeof(struct sockaddr_in); if (accept(listenfd, (struct sockaddr *)&cliaddr, &addrlen) == -1) error_flg = __LINE__; if ((errno = pthread_mutex_unlock(&mtx)) != 0) err(-1, "thread: %ld: pthread_mutex_unlock: %d", (long)pthread_self(), __LINE__); if (error_flg != -1) err(-1, "thread: %ld: accept: %d", (long)pthread_self(), error_flg); fprintf(stderr, "thread: %ld: accept a connection: %s:%d\n", (long)pthread_self(), inet_ntoa(cliaddr.sin_addr), ntohs(cliaddr.sin_port)); pthread_exit(NULL); } int main(int argc, char *argv[]) { int i; pthread_t threads[NR_THREAD]; struct sockaddr_in servaddr; if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) err(-1, "socket: %d", __LINE__); memset(&servaddr, 0, sizeof(struct sockaddr_in)); servaddr.sin_family = AF_INET; servaddr.sin_addr.s_addr = htonl(INADDR_ANY); servaddr.sin_port = htons(10240); if (bind(listenfd, (struct sockaddr *)&servaddr, sizeof(struct sockaddr_in)) == -1) err(-1, "bind: %d", __LINE__); if (listen(listenfd, 0) == -1) err(-1, "listen: %d", __LINE__); if ((errno = pthread_mutex_init(&mtx, NULL)) != 0) err(-1, "pthread_mutex_init: %d", __LINE__); for (i = 0; i != NR_THREAD; ++i) { if ((errno = pthread_create(&threads[i], NULL, &thrd_func, NULL)) != 0) err(-1, "pthread_create: %d", __LINE__); } for (i = 0; i != NR_THREAD; ++i) { if ((errno = pthread_join(threads[i], NULL)) != 0) err(-1, "pthread_join: %d", __LINE__); } return 0; }