题解 | #二叉树中和为某一值的路径(二)#
二叉树中和为某一值的路径(二)
http://www.nowcoder.com/practice/b736e784e3e34731af99065031301bca
//通用回溯方法的实现,用一个临时的数组来进行回溯
//当符合条件时申请空间保存回溯结果
#define MaxSize 5000
int tempPath[MaxSize];
int row = 0;
int col[MaxSize];
int tempDepth = 0;
int **path;
//int road[depth];
int TreeDepth(struct TreeNode *root)
{
if (!root)
return 0;
int LD, RD;
LD = TreeDepth(root->left);
RD = TreeDepth(root->right);
return (LD > RD ? LD : RD) + 1;
}
void preOrder(struct TreeNode *root, int target)
{
if (!root)
return;
tempPath[tempDepth++] = root->val;
//回溯结束条件
if (!root->left && !root->right && root->val == target)
{
// path[row] = tempPath; 这里不能给path这样赋值,否则相当于把path这一行的指针指向tempPath
//会导致结果随着tempPath更新而更新,这里可以通过循环遍历赋值
//也可以通过memcpy函数进行粘贴,同时可以在此处再为path分配空间
path[row] = (int *)malloc(sizeof(int) * tempDepth);
memcpy(path[row], tempPath, sizeof(int) * tempDepth);
col[row] = tempDepth;
row++;
}
preOrder(root->left, target - root->val);
preOrder(root->right, target - root->val);
//回溯,撤销操作
tempDepth--;
}
int **FindPath(struct TreeNode *root, int target, int *returnSize, int **returnColumnSizes)
{
if (!root)
return NULL;
//计算树的深度
int depth = TreeDepth(root);
path = (int **)malloc(sizeof(int *) * pow(2, depth));
// for (int i = 0; i < 5000; i++)
// path[i] = (int *)malloc(sizeof(int) * depth);
*returnSize = 0;
(*returnColumnSizes) = (int *)malloc(sizeof(int) * depth);
preOrder(root, target);
*returnSize = row;
*returnColumnSizes = col;
return path;
}
/**
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*
* C语言声明定义全局变量请加上static,防止重复定义
*/
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
*
* @param root TreeNode类
* @param target int整型
* @return int整型二维数组
* @return int* returnSize 返回数组行数
* @return int** returnColumnSizes 返回数组列数
*/
#define MaxSize 5000
//int road[depth];
int TreeDepth(struct TreeNode *root)
{
if (!root)
return 0;
int LD, RD;
LD = TreeDepth(root->left);
RD = TreeDepth(root->right);
return (LD > RD ? LD : RD) + 1;
}
void preOrder(struct TreeNode *root, int target, int **path, int *returnSize, int **returnColumnSizes)
{
path[*returnSize][(*returnColumnSizes)[*returnSize]++] = root->val;
target -= root->val;
if (!root->left && !root->right && target == 0)
{
for (int i = 0; i < (*returnColumnSizes)[*returnSize]; i++)
{
path[(*returnSize) + 1][i] = path[*returnSize][i];
}
(*returnColumnSizes)[(*returnSize) + 1] = (*returnColumnSizes)[*returnSize];
(*returnSize)++;
return;
}
else if (!root->left && !root->right && target != 0)
{
return;
}
if (root->left)
{
preOrder(root->left, target, path, returnSize, returnColumnSizes);
(*returnColumnSizes)[*returnSize]--;
}
if (root->right)
{
preOrder(root->right, target, path, returnSize, returnColumnSizes);
(*returnColumnSizes)[*returnSize]--;
}
}
int **FindPath(struct TreeNode *root, int target, int *returnSize, int **returnColumnSizes)
{
if (!root)
return NULL;
int **path;
//计算树的深度
int depth = TreeDepth(root);
path = (int **)malloc(sizeof(int *) * MaxSize);
for (int i = 0; i < 5000; i++)
path[i] = (int *)malloc(sizeof(int) * depth);
*returnSize = 0;
(*returnColumnSizes) = (int *)malloc(sizeof(int) * depth);
(*returnColumnSizes)[*returnSize] = 0;
preOrder(root, target, path, returnSize, returnColumnSizes);
return path;
}