一、java基础-6
2.16 HashMap与ConcurrentHashMap有什么区别?
参考答案
HashMap是非线程安全的,这意味着不应该在多线程中对这些Map进行修改操作,否则会产生数据不一致的问题,甚至还会因为并发插入元素而导致链表成环,这样在查找时就会发生死循环,影响到整个应用程序。
Collections工具类可以将一个Map转换成线程安全的实现,其实也就是通过一个包装类,然后把所有功能都委托给传入的Map,而包装类是基于synchronized关键字来保证线程安全的(Hashtable也是基于synchronized关键字),底层使用的是互斥锁,性能与吞吐量比较低。
ConcurrentHashMap的实现细节远没有这么简单,因此性能也要高上许多。它没有使用一个全局锁来锁住自己,而是采用了减少锁粒度的方法,尽量减少因为竞争锁而导致的阻塞与冲突,而且ConcurrentHashMap的检索操作是不需要锁的。
2.17 介绍一下ConcurrentHashMap是怎么实现的?
参考答案
JDK 1.7中的实现:
在 jdk 1.7 中,ConcurrentHashMap 是由 Segment 数据结构和 HashEntry 数组结构构成,采取分段锁来保证安全性。Segment 是 ReentrantLock 重入锁,在 ConcurrentHashMap 中扮演锁的角色,HashEntry 则用于存储键值对数据。一个 ConcurrentHashMap 里包含一个 Segment 数组,一个 Segment 里包含一个 HashEntry 数组,Segment 的结构和 HashMap 类似,是一个数组和链表结构。
JDK 1.8中的实现:
JDK1.8 的实现已经摒弃了 Segment 的概念,而是直接用 Node 数组+链表+红黑树的数据结构来实现,并发控制使用 Synchronized 和 CAS 来操作,整个看起来就像是优化过且线程安全的 HashMap,虽然在 JDK1.8 中还能看到 Segment 的数据结构,但是已经简化了属性,只是为了兼容旧版本。
2.18 ConcurrentHashMap是怎么分段分组的?
参考答案
get操作:
Segment的get操作实现非常简单和高效,先经过一次再散列,然后使用这个散列值通过散列运算定位到 Segment,再通过散列算法定位到元素。get操作的高效之处在于整个get过程都不需要加锁,除非读到空的值才会加锁重读。原因就是将使用的共享变量定义成 volatile
类型。
put操作:
当执行put操作时,会经历两个步骤:
- 判断是否需要扩容;
- 定位到添加元素的位置,将其放入 HashEntry 数组中。
插入过程会进行第一次 key 的 hash 来定位 Segment 的位置,如果该 Segment 还没有初始化,即通过 CAS 操作进行赋值,然后进行第二次 hash 操作,找到相应的 HashEntry 的位置,这里会利用继承过来的锁的特性,在将数据插入指定的 HashEntry 位置时(尾插法),会通过继承 ReentrantLock 的 tryLock()
方法尝试去获取锁,如果获取成功就直接插入相应的位置,如果已经有线程获取该Segment的锁,那当前线程会以自旋的方式去继续的调用 tryLock()
方法去获取锁,超过指定次数就挂起,等待唤醒。
2.19 说一说你对LinkedHashMap的理解
参考答案
LinkedHashMap使用双向链表来维护key-value对的顺序(其实只需要考虑key的顺序),该链表负责维护Map的迭代顺序,迭代顺序与key-value对的插入顺序保持一致。
LinkedHashMap可以避免对HashMap、Hashtable里的key-value对进行排序(只要插入key-value对时保持顺序即可),同时又可避免使用TreeMap所增加的成本。
LinkedHashMap需要维护元素的插入顺序,因此性能略低于HashMap的性能。但因为它以链表来维护内部顺序,所以在迭代访问Map里的全部元素时将有较好的性能。
2.20 请介绍LinkedHashMap的底层原理
参考答案
LinkedHashMap继承于HashMap,它在HashMap的基础上,通过维护一条双向链表,解决了HashMap不能随时保持遍历顺序和插入顺序一致的问题。在实现上,LinkedHashMap很多方法直接继承自HashMap,仅为维护双向链表重写了部分方法。
如下图,淡蓝色的箭头表示前驱引用,红色箭头表示后继引用。每当有新的键值对节点插入时,新节点最终会接在tail引用指向的节点后面。而tail引用则会移动到新的节点上,这样一个双向链表就建立起来了。
2.21 请介绍TreeMap的底层原理
参考答案
TreeMap基于红黑树(Red-Black tree)实现。映射根据其键的自然顺序进行排序,或者根据创建映射时提供的 Comparator 进行排序,具体取决于使用的构造方法。TreeMap的基本操作containsKey、get、put、remove方法,它的时间复杂度是log(N)。
TreeMap包含几个重要的成员变量:root、size、comparator。其中root是红黑树的根节点。它是Entry类型,Entry是红黑树的节点,它包含了红黑树的6个基本组成:key、value、left、right、parent和color。Entry节点根据根据Key排序,包含的内容是value。Entry中key比较大小是根据比较器comparator来进行判断的。size是红黑树的节点个数。
2.22 Map和Set有什么区别?
参考答案
Set代表无序的,元素不可重复的集合;
Map代表具有映射关系(key-value)的集合,其所有的key是一个Set集合,即key无序且不能重复。
2.23 List和Set有什么区别?
参考答案
Set代表无序的,元素不可重复的集合;
List代表有序的,元素可以重复的集合。
2.24 ArrayList和LinkedList有什么区别?
参考答案
- ArrayList的实现是基于数组,LinkedList的实现是基于双向链表;
- 对于随机访问ArrayList要优于LinkedList,ArrayList可以根据下标以O(1)时间复杂度对元素进行随机访问,而LinkedList的每一个元素都依靠地址指针和它后一个元素连接在一起,查找某个元素的时间复杂度是O(N);
- 对于插入和删除操作,LinkedList要优于ArrayList,因为当元素被添加到LinkedList任意位置的时候,不需要像ArrayList那样重新计算大小或者是更新索引;
- LinkedList比ArrayList更占内存,因为LinkedList的节点除了存储数据,还存储了两个引用,一个指向前一个元素,一个指向后一个元素。
2.25 有哪些线程安全的List?
参考答案
Vector
Vector是比较古老的API,虽然保证了线程安全,但是由于效率低一般不建议使用。
Collections.SynchronizedList
SynchronizedList是Collections的内部类,Collections提供了synchronizedList方法,可以将一个线程不安全的List包装成线程安全的List,即SynchronizedList。它比Vector有更好的扩展性和兼容性,但是它所有的方法都带有同步锁,也不是性能最优的List。
CopyOnWriteArrayList
CopyOnWriteArrayList是Java 1.5在java.util.concurrent包下增加的类,它采用复制底层数组的方式来实现写操作。当线程对此类集合执行读取操作时,线程将会直接读取集合本身,无须加锁与阻塞。当线程对此类集合执行写入操作时,集合会在底层复制一份新的数组,接下来对新的数组执行写入操作。由于对集合的写入操作都是对数组的副本执行操作,因此它是线程安全的。在所有线程安全的List中,它是性能最优的方案。
2.26 介绍一下ArrayList的数据结构?
参考答案
ArrayList的底层是用数组来实现的,默认第一次插入元素时创建大小为10的数组,超出限制时会增加50%的容量,并且数据以 System.arraycopy()
复制到新的数组,因此最好能给出数组大小的预估值。
按数组下标访问元素的性能很高,这是数组的基本优势。直接在数组末尾加入元素的性能也高,但如果按下标插入、删除元素,则要用 System.arraycopy()
来移动部分受影响的元素,性能就变差了,这是基本劣势。
2.27 谈谈CopyOnWriteArrayList的原理
参考答案
CopyOnWriteArrayList是Java并发包里提供的并发类,简单来说它就是一个线程安全且读操作无锁的ArrayList。正如其名字一样,在写操作时会复制一份新的List,在新的List上完成写操作,然后再将原引用指向新的List。这样就保证了写操作的线程安全。
CopyOnWriteArrayList允许线程并发访问读操作,这个时候是没有加锁限制的,性能较高。而写操作的时候,则首先将容器复制一份,然后在新的副本上执行写操作,这个时候写操作是上锁的。结束之后再将原容器的引用指向新容器。注意,在上锁执行写操作的过程中,如果有需要读操作,会作用在原容器上。因此上锁的写操作不会影响到并发访问的读操作。
- 优点:读操作性能很高,因为无需任何同步措施,比较适用于读多写少的并发场景。在遍历传统的List时,若中途有别的线程对其进行修改,则会抛出ConcurrentModificationException异常。而CopyOnWriteArrayList由于其"读写分离"的思想,遍历和修改操作分别作用在不同的List容器,所以在使用迭代器进行遍历时候,也就不会抛出ConcurrentModificationException异常了。
- 缺点:一是内存占用问题,毕竟每次执行写操作都要将原容器拷贝一份,数据量大时,对内存压力较大,可能会引起频繁GC。二是无法保证实时性,Vector对于读写操作均加锁同步,可以保证读和写的强一致性。而CopyOnWriteArrayList由于其实现策略的原因,写和读分别作用在新老不同容器上,在写操作执行过程中,读不会阻塞但读取到的却是老容器的数据。
2.28 说一说TreeSet和HashSet的区别
参考答案
HashSet、TreeSet中的元素都是不能重复的,并且它们都是线程不安全的,二者的区别是:
- HashSet中的元素可以是null,但TreeSet中的元素不能是null;
- HashSet不能保证元素的排列顺序,而TreeSet支持自然排序、定制排序两种排序的方式;
- HashSet底层是采用哈希表实现的,而TreeSet底层是采用红黑树实现的。
2.29 说一说HashSet的底层结构
参考答案
HashSet是基于HashMap实现的,默认构造函数是构建一个初始容量为16,负载因子为0.75 的HashMap。它封装了一个 HashMap 对象来存储所有的集合元素,所有放入 HashSet 中的集合元素实际上由 HashMap 的 key 来保存,而 HashMap 的 value 则存储了一个 PRESENT,它是一个静态的 Object 对象。
2.30 BlockingQueue中有哪些方法,为什么这样设计?
参考答案
为了应对不同的业务场景,BlockingQueue 提供了4 组不同的方法用于插入、移除以及对队列中的元素进行检查。如果请求的操作不能得到立即执行的话,每组方法的表现是不同的。这些方法如下:
抛异常 | 特定值 | 阻塞 | 超时 | |
---|---|---|---|---|
插入 | add(e) | offer(e) | put(e) | offer(e, time, unit) |
移除 | remove() | poll() | take() | poll(time, unit) |
检查 | element() | peek() |
四组不同的行为方式含义如下:
- 抛异常:如果操作无法立即执行,则抛一个异常;
- 特定值:如果操作无法立即执行,则返回一个特定的值(一般是 true / false)。
- 阻塞:如果操作无法立即执行,则该方法调用将会发生阻塞,直到能够执行;
- 超时:如果操作无法立即执行,则该方法调用将会发生阻塞,直到能够执行。但等待时间不会超过给定值,并返回一个特定值以告知该操作是否成功(典型的是true / false)。
2.31 BlockingQueue是怎么实现的?
参考答案
BlockingQueue是一个接口,它的实现类有ArrayBlockingQueue、DelayQueue、 LinkedBlockingQueue、PriorityBlockingQueue、SynchronousQueue等。它们的区别主要体现在存储结构上或对元素操作上的不同,但是对于put与take操作的原理是类似的。下面以ArrayBlockingQueue为例,来说明BlockingQueue的实现原理。
首先看一下ArrayBlockingQueue的构造函数,它初始化了put和take函数中用到的关键成员变量,这两个变量的类型分别是ReentrantLock和Condition。ReentrantLock是AbstractQueuedSynchronizer(AQS)的子类,它的newCondition函数返回的Condition实例,是定义在AQS类内部的ConditionObject类,该类可以直接调用AQS相关的函数。
public ArrayBlockingQueue(int capacity, boolean fair) { if (capacity <= 0) throw new IllegalArgumentException(); this.items = new Object[capacity]; lock = new ReentrantLock(fair); notEmpty = lock.newCondition(); notFull = lock.newCondition(); }
put函数会在队列末尾添加元素,如果队列已经满了,无法添加元素的话,就一直阻塞等待到可以加入为止。函数的源码如下所示。我们会发现put函数使用了wait/notify的机制。与一般生产者-消费者的实现方式不同,同步队列使用ReentrantLock和Condition相结合的机制,即先获得锁,再等待,而不是synchronized和wait的机制。
public void put(E e) throws InterruptedException { checkNotNull(e); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == items.length) notFull.await(); enqueue(e); } finally { lock.unlock(); } }
再来看一下消费者调用的take函数,take函数在队列为空时会被阻塞,一直到阻塞队列加入了新的元素。
public E take() throws InterruptedException { final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == 0) notEmpty.await(); return dequeue(); } finally { lock.unlock(); } }
扩展阅读
await操作:
我们发现ArrayBlockingQueue
并没有使用Object.wait
,而是使用的Condition.await
,这是为什么呢?Condition
对象可以提供和Object
的wait
和notify
一样的行为,但是后者必须先获取synchronized
这个内置的monitor
锁才能调用,而Condition
则必须先获取ReentrantLock
。这两种方式在阻塞等待时都会将相应的锁释放掉,但是Condition
的等待可以中断,这是二者唯一的区别。
我们先来看一下Condition
的await
函数,await函数的流程大致如下图所示。await函数主要有三个步骤,一是调用addConditionWaiter
函数,在condition wait queue
队列中添加一个节点,代表当前线程在等待一个消息。然后调用fullyRelease
函数,将持有的锁释放掉,调用的是AQS的函数。最后一直调用isOnSyncQueue
函数判断节点是否被转移到sync queue
队列上,也就是AQS中等待获取锁的队列。如果没有,则进入阻塞状态,如果已经在队列上,则调用acquireQueued
函数重新获取锁。
signal操作:
signal
函数将condition wait queue
队列中队首的线程节点转移等待获取锁的sync queue
队列中。这样的话,await
函数中调用isOnSyncQueue
函数就会返回true,导致await
函数进入最后一步重新获取锁的状态。
我们这里来详细解析一下condition wait queue
和sync queue
两个队列的设计原理。condition wait queue
是等待消息的队列,因为阻塞队列为空而进入阻塞状态的take
函数操作就是在等待阻塞队列不为空的消息。而sync queue
队列则是等待获取锁的队列,take函数获得了消息,就可以运行了,但是它还必须等待获取锁之后才能真正进行运行状态。
signal
函数其实就做了一件事情,就是不断尝试调用transferForSignal
函数,将condition wait queue
队首的一个节点转移到sync queue
队列中,直到转移成功。因为一次转移成功,就代表这个消息被成功通知到了等待消息的节点。
signal
函数的示意图如下所示。
2.32 Stream(不是IOStream)有哪些方法?
参考答案
Stream提供了大量的方法进行聚集操作,这些方法既可以是“中间的”,也可以是“末端的”。
- 中间方法:中间操作允许流保持打开状态,并允许直接调用后续方法。上面程序中的map()方法就是中间方法。中间方法的返回值是另外一个流。
- 末端方法:末端方法是对流的最终操作。当对某个Stream执行末端方法后,该流将会被“消耗”且不再可用。上面程序中的sum()、count()、average()等方法都是末端方法。
除此之外,关于流的方法还有如下两个特征:
- 有状态的方法:这种方法会给流增加一些新的属性,比如元素的唯一性、元素的最大数量、保证元素以排序的方式被处理等。有状态的方法往往需要更大的性能开销。
- 短路方法:短路方法可以尽早结束对流的操作,不必检查所有的元素。
下面简单介绍一下Stream常用的中间方法:
- filter(Predicate predicate):过滤Stream中所有不符合predicate的元素。
- mapToXxx(ToXxxFunction mapper):使用ToXxxFunction对流中的元素执行一对一的转换,该方法返回的新流中包含了ToXxxFunction转换生成的所有元素。
- peek(Consumer action):依次对每个元素执行一些操作,该方法返回的流与原有流包含相同的元素。该方法主要用于调试。
- distinct():该方法用于排序流中所有重复的元素(判断元素重复的标准是使用equals()比较返回true)。这是一个有状态的方法。
- sorted():该方法用于保证流中的元素在后续的访问中处于有序状态。这是一个有状态的方法。
- limit(long maxSize):该方法用于保证对该流的后续访问中最大允许访问的元素个数。这是一个有状态的、短路方法。
下面简单介绍一下Stream常用的末端方法:
- forEach(Consumer action):遍历流中所有元素,对每个元素执行action。
- toArray():将流中所有元素转换为一个数组。
- reduce():该方法有三个重载的版本,都用于通过某种操作来合并流中的元素。
- min():返回流中所有元素的最小值。
- max():返回流中所有元素的最大值。
- count():返回流中所有元素的数量。
- anyMatch(Predicate predicate):判断流中是否至少包含一个元素符合Predicate条件。
- noneMatch(Predicate predicate):判断流中是否所有元素都不符合Predicate条件。
- findFirst():返回流中的第一个元素。
- findAny():返回流中的任意一个元素。
除此之外,Java 8允许使用流式API来操作集合,Collection接口提供了一个stream()默认方法,该方法可返回该集合对应的流,接下来即可通过流式API来操作集合元素。由于Stream可以对集合元素进行整体的聚集操作,因此Stream极大地丰富了集合的功能。
扩展阅读
Java 8新增了Stream、IntStream、LongStream、DoubleStream等流式API,这些API代表多个支持串行和并行聚集操作的元素。上面4个接口中,Stream是一个通用的流接口,而IntStream、LongStream、DoubleStream则代表元素类型为int、long、double的流。
Java 8还为上面每个流式API提供了对应的Builder,例如Stream.Builder、IntStream.Builder、LongStream.Builder、DoubleStream.Builder,开发者可以通过这些Builder来创建对应的流。
独立使用Stream的步骤如下:
- 使用Stream或XxxStream的builder()类方法创建该Stream对应的Builder。
- 重复调用Builder的add()方法向该流中添加多个元素。
- 调用Builder的build()方法获取对应的Stream。
- 调用Stream的聚集方法。
在上面4个步骤中,第4步可以根据具体需求来调用不同的方法,Stream提供了大量的聚集方法供用户调用,具体可参考Stream或XxxStream的API文档。对于大部分聚集方法而言,每个Stream只能执行一次。