Hadoop-Mapreduce实战(压缩解压案例)

压缩解压案例

  • 数据流的压缩和解压缩

    CompressionCodec有两个方法可以用于轻松地压缩或解压缩数据。要想对正在被写入一个输出流的数据进行压缩,我们可以使用createOutputStream(OutputStreamout)方法创建一个CompressionOutputStream,将其以压缩格式写入底层的流。相反,要想对从输入流读取而来的数据进行解压缩,则调用createInputStream(InputStreamin)函数,从而获得一个CompressionInputStream,从而从底层的流读取未压缩的数据。

    测试一下如下压缩方式:

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.CompressionCodecFactory;
import org.apache.hadoop.io.compress.CompressionInputStream;
import org.apache.hadoop.io.compress.CompressionOutputStream;
import org.apache.hadoop.util.ReflectionUtils;

public class TestCompress {
   

	public static void main(String[] args) throws Exception {
   
		compress("e:/hello.txt","org.apache.hadoop.io.compress.BZip2Codec");
// decompress("e:/hello.txt.bz2");
	}

  /** * 压缩方法 * * @param fliename 文件路径+文件名 * @param method 解码器 */
    private static void compress(String filename, String method) throws Exception {
   
        //创建输入流
        FileInputStream fis = new FileInputStream(new File(filename));

        //通过反射找到解码器的类
        Class codeClass = Class.forName(method);

        //通过反射工具类找到解码器对象,需要用到配置conf对象
        CompressionCodec codec = (CompressionCodec) ReflectionUtils.newInstance(codeClass, new Configuration());

        //创建输出流
        FileOutputStream fos = new FileOutputStream(new File(filename + codec.getDefaultExtension()));

        //获得解码器的输出对象
        CompressionOutputStream cos = codec.createOutputStream(fos);

        //流拷贝
        IOUtils.copyBytes(fis,cos,5 * 1024 * 1024,false);

        //关闭流
        cos.close();
        fos.close();
        fis.close();
}

    /** * 解开压缩 * * @param 文件路径+文件名 * @param 后缀 */
    private static void decompress(String filename, String decoded) throws Exception {
   
        //获取factory实例
        CompressionCodecFactory factory = new CompressionCodecFactory(new Configuration());

        CompressionCodec codec = factory.getCodec(new Path(filename));

        if (codec == null) {
   
            System.out.println(filename);
            return;
        }

        //解压缩的输入
        CompressionInputStream cis = codec.createInputStream(new FileInputStream(new File(filename)));

        //输出流
        FileOutputStream fos = new FileOutputStream(new File(filename + "." + decoded));

        //流拷贝
        IOUtils.copyBytes(cis, fos, 5 * 1024 * 1024, false);

        cis.close();
        fos.close();
    }

Map输出端采用压缩

即使你的MapReduce的输入输出文件都是未压缩的文件,你仍然可以对map任务的中间结果输出做压缩,因为它要写在硬盘并且通过网络传输到reduce节点,对其压缩可以提高很多性能,这些工作只要设置两个属性即可,我们来看下代码怎么设置:

  • 给大家提供的hadoop源码支持的压缩格式有:BZip2Codec 、DefaultCodec
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.BZip2Codec;	
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCountDriver {
   

	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
   

		Configuration configuration = new Configuration();

		// 开启map端输出压缩
		configuration.setBoolean("mapreduce.map.output.compress", true);
		// 设置map端输出压缩方式
		configuration.setClass("mapreduce.map.output.compress.codec", BZip2Codec.class, CompressionCodec.class);

		Job job = Job.getInstance(configuration);

		job.setJarByClass(WordCountDriver.class);

		job.setMapperClass(WordCountMapper.class);
		job.setReducerClass(WordCountReducer.class);

		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(IntWritable.class);

		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);

		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));

		boolean result = job.waitForCompletion(true);

		System.exit(result ? 1 : 0);
	}
}

Mapper保持不变

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
   
	
	@Override
	protected void map(LongWritable key, Text value, Context context)
			throws IOException, InterruptedException {
   
		// 1 获取一行
		String line = value.toString();
		// 2 切割
		String[] words = line.split(" ");
		// 3 循环写出
		for(String word:words){
   
			context.write(new Text(word), new IntWritable(1));
		}
	}
}

Reducer保持不变

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
   
	
	@Override
	protected void reduce(Text key, Iterable<IntWritable> values,
			Context context) throws IOException, InterruptedException {
   
		
		int count = 0;
		// 1 汇总
		for(IntWritable value:values){
   
			count += value.get();
		}
		
        // 2 输出
		context.write(key, new IntWritable(count));
	}
}

Reduce输出端采用压缩

基于workcount案例处理

  • 修改驱动
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.BZip2Codec;
import org.apache.hadoop.io.compress.DefaultCodec;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.io.compress.Lz4Codec;
import org.apache.hadoop.io.compress.SnappyCodec;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCountDriver {
   

	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
   
		
		Configuration configuration = new Configuration();
		
		Job job = Job.getInstance(configuration);
		
		job.setJarByClass(WordCountDriver.class);
		
		job.setMapperClass(WordCountMapper.class);
		job.setReducerClass(WordCountReducer.class);
		
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(IntWritable.class);
		
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);
		
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		
		// 设置reduce端输出压缩开启
		FileOutputFormat.setCompressOutput(job, true);
		
		// 设置压缩的方式
	    FileOutputFormat.setOutputCompressorClass(job, BZip2Codec.class); 
// FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class); 
// FileOutputFormat.setOutputCompressorClass(job, DefaultCodec.class); 
	    
		boolean result = job.waitForCompletion(true);
		
		System.exit(result?1:0);
	}
}

Mapper和Reducer保持不变

全部评论

相关推荐

2024-12-21 01:36
电子科技大学 Java
牛客850385388号:员工福利查看图片
点赞 评论 收藏
分享
评论
点赞
收藏
分享
牛客网
牛客企业服务