275. H指数II
给定一个大小为 n 的数组,找出其中所有出现超过 ⌊ n/3 ⌋
次的元素。
说明: 要求算法的时间复杂度为 O(n),空间复杂度为 O(1)。
解法:二分法
关键在于如何理解H指数。H指数的计算方式可以总结为如下:
给定一个降序数组,其索引从1开始。只需从右向左寻找到第一个H指数大于其论文序号,其值就是其论文序号。在下面的例子中,这个序号是3。
H指数: 28 8 5 3 3
论文序号: 1 2 3 4 5根据题意,上述例子应转化为这样:
H指数: 3 3 5 8 28
论文序号: 5 4 3 2 1
数组索引: 0 1 2 3 4因此,只需将论文序号和数组索引对应起来,再从左至右寻找到一个H指数大于其论文序号的值即可。由此,使用二分法去寻找。
相似题目:H指数
class Solution { public: int hIndex(vector<int>& citations) { int left=0,len=citations.size(),right=len-1,mid; while(left<=right){ mid=left+(right-left)/2; if(citations[mid]==(len-mid)) return citations[mid]; else if(citations[mid]>(len-mid)) right=mid-1; else left=mid+1; } return len-(right+1); } };
扩展:labuladong的二分解题框架
作者:labuladong
公众号:labuladong
本文就来探究几个最常用的二分查找场景:寻找一个数、寻找左侧边界、寻找右侧边界。而且,我们就是要深入细节,比如不等号是否应该带等号,mid 是否应该加一等等。
以问答的形式,分析这些细节的差异以及出现这些差异的原因,保证你能灵活准确地写出正确的二分查找算法。
零、二分查找框架
int binarySearch(int[] nums, int target) { int left = 0, right = ...; while(...) { int mid = left + (right - left) / 2; if (nums[mid] == target) { ... } else if (nums[mid] < target) { left = ... } else if (nums[mid] > target) { right = ... } } return ...; }
分析二分查找的一个技巧是:不要出现 else,而是把所有情况用 else if 写清楚,这样可以清楚地展现所有细节。本文都会使用 else if,旨在讲清楚,读者理解后可自行简化。
其中...
标记的部分,就是可能出现细节问题的地方,当你见到一个二分查找的代码时,首先注意这几个地方。后文用实例分析这些地方能有什么样的变化。
另外声明一下,计算 mid 时需要防止溢出,代码中left + (right - left) / 2
就和(left + right) / 2
的结果相同,但是有效防止了left
和right
太大直接相加导致溢出。
一、寻找一个数(基本的二分搜索)
这个场景是最简单的,肯能也是大家最熟悉的,即搜索一个数,如果存在,返回其索引,否则返回 -1。
int binarySearch(int[] nums, int target) { int left = 0; int right = nums.length - 1; // 注意 while(left <= right) { int mid = left + (right - left) / 2; if(nums[mid] == target) return mid; else if (nums[mid] < target) left = mid + 1; // 注意 else if (nums[mid] > target) right = mid - 1; // 注意 } return -1; }
1、为什么 while 循环的条件中是 <=,而不是 <?
答:因为初始化right
的赋值是nums.length - 1
,即最后一个元素的索引,而不是nums.length
。
这二者可能出现在不同功能的二分查找中,区别是:前者相当于两端都闭区间[left, right]
,后者相当于左闭右开区间[left, right)
,因为索引大小为nums.length
是越界的。
我们这个算法中使用的是前者[left, right]
两端都闭的区间。这个区间其实就是每次进行搜索的区间。
什么时候应该停止搜索呢?当然,找到了目标值的时候可以终止:
if(nums[mid] == target) return mid;
但如果没找到,就需要 while 循环终止,然后返回 -1。那 while 循环什么时候应该终止?搜索区间为空的时候应该终止,意味着你没得找了,就等于没找到嘛。
while(left <= right)
的终止条件是left == right + 1
,写成区间的形式就是[right + 1, right]
,或者带个具体的数字进去[3, 2]
,可见这时候区间为空,因为没有数字既大于等于 3 又小于等于 2 的吧。所以这时候 while 循环终止是正确的,直接返回 -1 即可。
while(left < right)
的终止条件是left == right
,写成区间的形式就是[left, right]
,或者带个具体的数字进去[2, 2]
,这时候区间非空,还有一个数 2,但此时 while 循环终止了。也就是说这区间[2, 2]
被漏掉了,索引 2 没有被搜索,如果这时候直接返回 -1 就是错误的。
当然,如果你非要用while(left < right)
也可以,我们已经知道了出错的原因,就打个补丁好了:
//... while(left < right) { // ... } return nums[left] == target ? left : -1;
2、为什么left = mid + 1
,right = mid - 1
?我看有的代码是right = mid
或者left = mid
,没有这些加加减减,到底怎么回事,怎么判断?
答:这也是二分查找的一个难点,不过只要你能理解前面的内容,就能够很容易判断。
刚才明确了「搜索区间」这个概念,而且本算法的搜索区间是两端都闭的,即[left, right]
。那么当我们发现索引mid
不是要找的target
时,下一步应该去搜索哪里呢?
当然是去搜索[left, mid-1]
或者[mid+1, right]
对不对?因为mid
已经搜索过,应该从搜索区间中去除。
3、此算法有什么缺陷?
答:至此,你应该已经掌握了该算法的所有细节,以及这样处理的原因。但是,这个算法存在局限性。
比如说给你有序数组nums = [1,2,2,2,3]
,target
为 2,此算法返回的索引是 2,没错。但是如果我想得到target
的左侧边界,即索引 1,或者我想得到target
的右侧边界,即索引 3,这样的话此算法是无法处理的。
这样的需求很常见,你也许会说,找到一个 target,然后向左或向右线性搜索不行吗?可以,但是不好,因为这样难以保证二分查找对数级的复杂度了。
我们后续的算法就来讨论这两种二分查找的算法。
二、寻找左侧边界的二分搜索
以下是最常见的代码形式,其中的标记是需要注意的细节:
int left_bound(int[] nums, int target) { if (nums.length == 0) return -1; int left = 0; int right = nums.length; // 注意 while (left < right) { // 注意 int mid = (left + right) / 2; if (nums[mid] == target) { right = mid; } else if (nums[mid] < target) { left = mid + 1; } else if (nums[mid] > target) { right = mid; // 注意 } } return left; }
1、为什么 while 中是<
而不是<=
?
答:用相同的方法分析,因为right = nums.length
而不是nums.length - 1
。因此每次循环的「搜索区间」是[left, right)
左闭右开。
while(left < right)
终止的条件是left == right
,此时搜索区间[left, left)
为空,所以可以正确终止。
PS:这里先要说一个搜索左右边界和上面这个算法的一个区别,也是很多读者问的:刚才的right
不是nums.length - 1
吗,为啥这里非要写成nums.length
使得「搜索区间」变成左闭右开呢?
因为对于搜索左右侧边界的二分查找,这种写法比较普遍,我就拿这种写法举例了,保证你以后看到这类代码可以理解。其实你非要用两端都闭的写法反而更简单,我会在后面写相关的代码,把三种二分搜索都用一种两端都闭的写法统一起来,你耐心往后看就行了。
2、为什么没有返回 -1 的操作?如果nums
中不存在target
这个值,怎么办?
答:因为要一步一步来,先理解一下这个「左侧边界」有什么特殊含义:
对于这个数组,算***返回 1。这个 1 的含义可以这样解读:nums
中小于 2 的元素有 1 个。
比如对于有序数组nums = [2,3,5,7]
,target = 1
,算***返回 0,含义是:nums
中小于 1 的元素有 0 个。
再比如说nums = [2,3,5,7], target = 8
,算***返回 4,含义是:nums
中小于 8 的元素有 4 个。
综上可以看出,函数的返回值(即left
变量的值)取值区间是闭区间[0, nums.length]
,所以我们简单添加两行代码就能在正确的时候 return -1:
while (left < right) { //... } // target 比所有数都大 if (left == nums.length) return -1; // 类似之前算法的处理方式 return nums[left] == target ? left : -1;
3、为什么left = mid + 1
,right = mid
?和之前的算法不一样?
答:这个很好解释,因为我们的「搜索区间」是[left, right)
左闭右开,所以当nums[mid]
被检测之后,下一步的搜索区间应该去掉mid
分割成两个区间,即[left, mid)
或[mid + 1, right)
。
4、为什么该算法能够搜索左侧边界?
答:关键在于对于nums[mid] == target
这种情况的处理:
if (nums[mid] == target) right = mid;
可见,找到 target 时不要立即返回,而是缩小「搜索区间」的上界right
,在区间[left, mid)
中继续搜索,即不断向左收缩,达到锁定左侧边界的目的。
5、为什么返回left
而不是right
?
答:都是一样的,因为 while 终止的条件是left == right
。
6、能不能想办法把right
变成nums.length - 1
,也就是继续使用两边都闭的「搜索区间」?这样就可以和第一种二分搜索在某种程度上统一起来了。
答:当然可以,只要你明白了「搜索区间」这个概念,就能有效避免漏掉元素,随便你怎么改都行。下面我们严格根据逻辑来修改:
因为你非要让搜索区间两端都闭,所以right
应该初始化为nums.length - 1
,while 的终止条件应该是left == right + 1
,也就是其中应该用<=
:
int left_bound(int[] nums, int target) { // 搜索区间为 [left, right] int left = 0, right = nums.length - 1; while (left <= right) { int mid = left + (right - left) / 2; // if else ... }
因为搜索区间是两端都闭的,且现在是搜索左侧边界,所以left
和right
的更新逻辑如下:
if (nums[mid] < target) { // 搜索区间变为 [mid+1, right] left = mid + 1; } else if (nums[mid] > target) { // 搜索区间变为 [left, mid-1] right = mid - 1; } else if (nums[mid] == target) { // 收缩右侧边界 right = mid - 1; }
由于 while 的退出条件是left == right + 1
,所以当target
比nums
中所有元素都大时,会存在以下情况使得索引越界:
因此,最后返回结果的代码应该检查越界情况:
if (left >= nums.length || nums[left] != target) return -1; return left;
至此,整个算法就写完了,完整代码如下:
int left_bound(int[] nums, int target) { int left = 0, right = nums.length - 1; // 搜索区间为 [left, right] while (left <= right) { int mid = left + (right - left) / 2; if (nums[mid] < target) { // 搜索区间变为 [mid+1, right] left = mid + 1; } else if (nums[mid] > target) { // 搜索区间变为 [left, mid-1] right = mid - 1; } else if (nums[mid] == target) { // 收缩右侧边界 right = mid - 1; } } // 检查出界情况 if (left >= nums.length || nums[left] != target) return -1; return left; }
这样就和第一种二分搜索算法统一了,都是两端都闭的「搜索区间」,而且最后返回的也是left
变量的值。只要把住二分搜索的逻辑,两种形式大家看自己喜欢哪种记哪种吧。
三、寻找右侧边界的二分查找
类似寻找左侧边界的算法,这里也会提供两种写法,还是先写常见的左闭右开的写法,只有两处和搜索左侧边界不同,已标注:
int right_bound(int[] nums, int target) { if (nums.length == 0) return -1; int left = 0, right = nums.length; while (left < right) { int mid = (left + right) / 2; if (nums[mid] == target) { left = mid + 1; // 注意 } else if (nums[mid] < target) { left = mid + 1; } else if (nums[mid] > target) { right = mid; } } return left - 1; // 注意 }
1、为什么这个算法能够找到右侧边界?
答:类似地,关键点还是这里:
if (nums[mid] == target) { left = mid + 1;
当nums[mid] == target
时,不要立即返回,而是增大「搜索区间」的下界left
,使得区间不断向右收缩,达到锁定右侧边界的目的。
2、为什么最后返回left - 1
而不像左侧边界的函数,返回left
?而且我觉得这里既然是搜索右侧边界,应该返回right
才对。
答:首先,while 循环的终止条件是left == right
,所以left
和right
是一样的,你非要体现右侧的特点,返回right - 1
好了。
至于为什么要减一,这是搜索右侧边界的一个特殊点,关键在这个条件判断:
if (nums[mid] == target) { left = mid + 1; // 这样想: mid = left - 1
因为我们对left
的更新必须是left = mid + 1
,就是说 while 循环结束时,nums[left]
一定不等于target
了,而nums[left-1]
可能是target
。
至于为什么left
的更新必须是left = mid + 1
,同左侧边界搜索,就不再赘述。
3、为什么没有返回 -1 的操作?**如果**nums
中不存在target
这个值,怎么办?
答:类似之前的左侧边界搜索,因为 while 的终止条件是left == right
,就是说left
的取值范围是[0, nums.length]
,所以可以添加两行代码,正确地返回 -1:
while (left < right) { // ... } if (left == 0) return -1; return nums[left-1] == target ? (left-1) : -1;
4、是否也可以把这个算法的「搜索区间」也统一成两端都闭的形式呢?**这样这三个写法就完全统一了,以后就可以闭着眼睛写出来了**。
答:当然可以,类似搜索左侧边界的统一写法,其实只要改两个地方就行了:
int right_bound(int[] nums, int target) { int left = 0, right = nums.length - 1; while (left <= right) { int mid = left + (right - left) / 2; if (nums[mid] < target) { left = mid + 1; } else if (nums[mid] > target) { right = mid - 1; } else if (nums[mid] == target) { // 这里改成收缩左侧边界即可 left = mid + 1; } } // 这里改为检查 right 越界的情况,见下图 if (right < 0 || nums[right] != target) return -1; return right; }
当target
比所有元素都小时,right
会被减到 -1,所以需要在最后防止越界:
至此,搜索右侧边界的二分查找的两种写法也完成了,其实将「搜索区间」统一成两端都闭反而更容易记忆,你说是吧?
四、逻辑统一
来梳理一下这些细节差异的因果逻辑:
第一个,最基本的二分查找算法:
因为我们初始化 right = nums.length - 1 所以决定了我们的「搜索区间」是 [left, right] 所以决定了 while (left <= right) 同时也决定了 left = mid+1 和 right = mid-1 因为我们只需找到一个 target 的索引即可 所以当 nums[mid] == target 时可以立即返回
第二个,寻找左侧边界的二分查找:
因为我们初始化 right = nums.length 所以决定了我们的「搜索区间」是 [left, right) 所以决定了 while (left < right) 同时也决定了 left = mid + 1 和 right = mid 因为我们需找到 target 的最左侧索引 所以当 nums[mid] == target 时不要立即返回 而要收紧右侧边界以锁定左侧边界
第三个,寻找右侧边界的二分查找:
因为我们初始化 right = nums.length 所以决定了我们的「搜索区间」是 [left, right) 所以决定了 while (left < right) 同时也决定了 left = mid + 1 和 right = mid 因为我们需找到 target 的最右侧索引 所以当 nums[mid] == target 时不要立即返回 而要收紧左侧边界以锁定右侧边界 又因为收紧左侧边界时必须 left = mid + 1 所以最后无论返回 left 还是 right,必须减一
对于寻找左右边界的二分搜索,常见的手法是使用左闭右开的「搜索区间」,我们还根据逻辑将「搜索区间」全都统一成了两端都闭,便于记忆,只要修改两处即可变化出三种写法:
int binary_search(int[] nums, int target) { int left = 0, right = nums.length - 1; while(left <= right) { int mid = left + (right - left) / 2; if (nums[mid] < target) { left = mid + 1; } else if (nums[mid] > target) { right = mid - 1; } else if(nums[mid] == target) { // 直接返回 return mid; } } // 直接返回 return -1; } int left_bound(int[] nums, int target) { int left = 0, right = nums.length - 1; while (left <= right) { int mid = left + (right - left) / 2; if (nums[mid] < target) { left = mid + 1; } else if (nums[mid] > target) { right = mid - 1; } else if (nums[mid] == target) { // 别返回,锁定左侧边界 right = mid - 1; } } // 最后要检查 left 越界的情况 if (left >= nums.length || nums[left] != target) return -1; return left; } int right_bound(int[] nums, int target) { int left = 0, right = nums.length - 1; while (left <= right) { int mid = left + (right - left) / 2; if (nums[mid] < target) { left = mid + 1; } else if (nums[mid] > target) { right = mid - 1; } else if (nums[mid] == target) { // 别返回,锁定右侧边界 left = mid + 1; } } // 最后要检查 right 越界的情况 if (right < 0 || nums[right] != target) return -1; return right; }
如果以上内容你都能理解,那么恭喜你,二分查找算法的细节不过如此。
通过本文,你学会了:
1、分析二分查找代码时,不要出现 else,全部展开成 else if 方便理解。
2、注意「搜索区间」和 while 的终止条件,如果存在漏掉的元素,记得在最后检查。
3、如需定义左闭右开的「搜索区间」搜索左右边界,只要在nums[mid] == target
时做修改即可,搜索右侧时需要减一。
4、如果将「搜索区间」全都统一成两端都闭,好记,只要稍改nums[mid] == target
条件处的代码和返回的逻辑即可,推荐拿小本本记下,作为二分搜索模板。
现在可以去把我做的诗多读几遍,体会体会其中的味道,加深理解,哈哈哈!