HDOJ 3694 Fermat Point in Quadrangle
求四边形的费马点
费马点的定义:在平面上的到四边形四个顶点A,B,C,D的点
当ABCD为凸四边形的时候
可以证明M点是费马点,M是对角线的交点
当ABCD为凹四边形的时候
在ABCD四点中有某一个点为费马点
所以,这个点就是个计算几何的模板题啦~~~~~~
我们也不需要判断四边形的凹凸性
把六条线段算出来,判断是不是有交点就好,然后暴力枚举每一个可能性
#include<bits/stdc++.h>
using namespace std;
const double eps=1e-6;
const double inf=1e20;
const double pi=acos(-1.0);
const int maxp=1010;
int sgn(double x){
if (fabs(x)<eps) return 0;
if (x<0) return -1;
else return 1;
}
double sqr(double x){
return x*x;
}
struct Point{
double x,y;
Point(){}
Point(double _x,double _y){
x=_x;
y=_y;
}
void input(){
scanf("%lf%lf",&x,&y);
}
void output(){
printf("%.2lf %.2lf\n",x,y);
}
double operator ^ (const Point &b) const{
return x*b.y-y*b.x;
}
double operator * (const Point &b) const{
return x*b.x+y*b.y;
}
double len2(){
return x*x+y*y;
}
double len(){
return sqrt(x*x+y*y);
}
double distance(Point p){
return hypot(x-p.x,y-p.y);
}
Point operator - (const Point &b) const{
return Point(x-b.x,y-b.y);
}
Point operator + (const Point &b) const{
return Point(x+b.x,y+b.y);
}
Point operator * (const double &k) const{
return Point(x*k,y*k);
}
Point operator / (const double &k) const{
return Point(x/k,y/k);
}
};
struct Line{
Point s,e;
Line(){}
Line(Point _s,Point _e){
s=_s;
e=_e;
}
Line(Point p,double angle){
s=p;
if (sgn(angle-pi/2)==0) e=(s+Point(0,1));
else e=(s+Point(1,tan(angle)));
}
Line(double a,double b,double c){
if (sgn(a)==0){
s=Point(0,-c/b);
e=Point(1,-c/b);
}
else if (sgn(b)==0){
s=Point(-c/a,0);
e=Point(-c/a,1);
}
else{
s=Point(0,-c/b);
e=Point(1,(-c-a)/b);
}
}
void input(){
s.input();
e.input();
}
int segcrossseg(Line v){
int d1=sgn((e-s)^(v.s-s));
int d2=sgn((e-s)^(v.e-s));
int d3=sgn((v.e-v.s)^(s-v.s));
int d4=sgn((v.e-v.s)^(e-v.s));
if ((d1^d2)==-2 && ((d3^d4)==-2) ) return 2;
return ((d1==0&&sgn((v.s-s)*(v.s-e))<=0) ||
(d2==0&&sgn((v.e-s)*(v.e-e))<=0) ||
(d3==0&&sgn((s-v.s)*(s-v.e))<=0) ||
(d4==0&&sgn((e-v.s)*(e-v.e))<=0));
}
Point crosspoint(Line v){
double a1=(v.e-v.s)^(s-v.s);
double a2=(v.e-v.s)^(e-v.s);
return Point((s.x*a2-e.x*a1)/(a2-a1),(s.y*a2-e.y*a1)/(a2-a1));
}
};
Point A,B,C,D,M;
Line AB,CD,AC,BD,AD,BC;
double ans;
double calc(Point x){
return A.distance(x)+B.distance(x)+C.distance(x)+D.distance(x);
}
int main(){
//freopen("input.txt","r",stdin);
while(1){
A.input();B.input();C.input();D.input();
if (A.x==-1&&A.y==-1&&B.x==-1&&B.y==-1&&C.x==-1&&C.y==-1&&D.x==-1&&D.y==-1) break;
ans=inf;
ans=min(ans,calc(A));
ans=min(ans,calc(B));
ans=min(ans,calc(C));
ans=min(ans,calc(D));
AB=Line(A,B);
CD=Line(C,D);
if (AB.segcrossseg(CD)>0){
M=AB.crosspoint(CD);
ans=min(ans,calc(M));
}
AC=Line(A,C);
BD=Line(B,D);
if (AC.segcrossseg(BD)>0){
M=AC.crosspoint(BD);
ans=min(ans,calc(M));
}
AD=Line(A,D);
BC=Line(B,C);
if (AD.segcrossseg(BC)>0){
M=AD.crosspoint(BC);
ans=min(ans,calc(M));
}
printf("%.4lf\n",ans);
}
return 0;
}