算法test005
求最大子数组和。输入一个整形数组,数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和,求所有子数组和的最大值。
例:输入的数组为1,-2,3,10,-4,7,2,-5。和最大的子数组为3,10,-4,7,2。因此输出该子数组的和为18。
代码如下:
方法一(暴力法)
public class test005 {
public static void main(String[] args) {
int[] a = new int[]{1,-2, 3,10, -4, 7, 2, -5};
int res = maxSum(a);
System.out.println("所有子数组和的最大值为:"+res);
}
private static int maxSum(int[] a) { if(a==null || a.length ==0){ return 0; } int max = a[0]; for(int i=0; i<a.length; i++){ int temp = 0; for(int j=i; j<a.length; j++){ temp+=a[j]; if(temp>max){ max = temp; } } } return max; }
}
算法复杂度为O(n^2)
方法二
public class test005 {
public static void main(String[] args) {
int[] a = new int[]{1,-2, 3,10, -4, 7, 2, -5};
int res = maxSum2(a);
System.out.println("所有子数组和的最大值为:"+res);
}
public static int maxSum2(int[] a){ if(null == a || a.length == 0){ return 0; } int tmp = a[0]; int max = a[0]; for(int i = 1; i < a.length; i++){ if(tmp < 0){ tmp = 0; } tmp += a[i]; max = Math.max(max, tmp); } return max; }
}
算法复杂度为O(n)
方法三(分治法、dp解法)
public class test005 {
public static void main(String[] args) {
int[] a = new int[]{1,-2, 3,10, -4, 7, 2, -5};
int res = maxSum3(a, 0, a.length-1);
System.out.println("所有子数组和的最大值为:"+res);
}
public static int maxSum3(int[] a, int left, int right){ if(left == right){ return a[left]; }else{ int mid = left + (right - left) / 2; int leftMaxSum = maxSum3(a, left, mid); int rightMaxSum = maxSum3(a, mid + 1, right); int crossMaxSum = crossMaxSum(a, left, mid, right); return Math.max(Math.max(leftMaxSum, rightMaxSum), crossMaxSum); } } public static int crossMaxSum(int[] a, int left, int mid, int right){ int leftMaxSum = 0; int temp = 0; for(int i = mid; i >= left; i--){ temp += a[i]; leftMaxSum = Math.max(leftMaxSum, temp); } temp = 0; int rightMaxSum = 0; for(int i = mid + 1; i <= right; i++){ temp += a[i]; rightMaxSum = Math.max(rightMaxSum, temp); } return leftMaxSum + rightMaxSum; }
}
时间复杂度:O(nlogn)
欢迎交流指正~
根据自己所见所闻进行算法归纳总结