从零开始的莫比乌斯反演(函数)[详细推导]

也许更好的阅读体验


前置技能

  • 学会莫比乌斯函数必须要先知道狄利克雷函数
  • 以及什么是逆元(一本正经胡说八道)

    狄利克雷卷积

    两个函数 f , g f,g f,g
    <mstyle displaystyle="true" scriptlevel="0"> f g ( n ) = <munderover> d n n </munderover> f ( d ) g ( n d ) </mstyle> \begin{aligned}f*g(n)=\sum_{d|n}^nf(d)g(\frac{n}{d})\end{aligned} fg(n)=dnnf(d)g(dn)
    • 性质
      交换律 <mtext>                   </mtext> f g = g f \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ f*g=g*f                  fg=gf
      结合律 <mtext>                   </mtext> f g h = f ( g h ) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ f*g*h=f*(g*h)                  fgh=f(gh)
      加法分配率 <mtext>            </mtext> f ( g + h ) = f g + f h \ \ \ \ \ \ \ \ \ \ f*(g+h)=f*g+f*h           f(g+h)=fg+fh

    几个定理

    • ① 定义单位函数 I ( n ) = [ n = 1 ] I(n)=[n=1] I(n)=[n=1],即只有当n等于1时, I ( 1 ) = 1 I(1)=1 I(1)=1,其余情况都为0
    • ②  I f = f I * f=f If=f
    • ③ 已知函数 f f f,定义函数 f f f的逆 f 1 f^{-1} f1,满足 f f 1 = I f * f^{-1}=I ff1=I,且积性函数的逆也是积性函数
    • ④ 由③可得 f 1 ( 1 ) = 1 f ( 1 ) f^{-1}(1)=\frac{1}{f(1)} f1(1)=f(1)1
    • ⑤ 令 ξ ( n ) = 1 \xi(n)=1 ξ(n)=1

莫比乌斯函数

  • 莫比乌斯函数 μ = ξ 1 \mu=\xi^{-1} μ=ξ1
    n = p 1 a 1 p 2 a 2 p k a k n=p_1^{a_1}·p_2^{a_2}·\cdots p_k^{a_k} n=p1a1p2a2pkak
    μ ( n ) = ξ 1 ( n ) = { <mstyle displaystyle="false" scriptlevel="0"> 1 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> n = 1 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> ( 1 ) k </mstyle> <mstyle displaystyle="false" scriptlevel="0"> a 1 = a 2 = = a k = 1 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> </mstyle> <mstyle displaystyle="false" scriptlevel="0"> 0 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> o t h e r w i s e </mstyle> \mu(n)=\xi^{-1}(n)= \left\{\begin{matrix}1 &amp;n=1 \\(-1)^k &amp;a1=a2=\cdots =ak=1&amp;\\ 0&amp;otherwise \end{matrix}\right. μ(n)=ξ1(n)=1(1)k0n=1a1=a2==ak=1otherwise

如何推导

  • 如何求逆

    ③等价于

    <mstyle displaystyle="true" scriptlevel="0"> n : <munder> d n </munder> f ( d ) f 1 ( n d ) = [ n = 1 ] </mstyle> \begin{aligned}\forall n: \sum_{d|n} f(d)·f^{-1}(\frac nd)=[n=1]\end{aligned} n:dnf(d)f1(dn)=[n=1]

    <mstyle displaystyle="true" scriptlevel="0"> <munder> d n </munder> f ( d ) f 1 ( n d ) = I ( n ) ( n = <mpadded width="0px"> ̸ </mpadded> 1 ) = 0 </mstyle> \begin{aligned}\sum_{d|n}f(d)·f^{-1}(\frac nd)=I(n) (n=\not 1)=0\end{aligned} dnf(d)f1(dn)=I(n)(n≠1)=0

    f 1 ( n ) f ( 1 ) = d n , d = <mpadded width="0px"> ̸ </mpadded> 1 f ( d ) f 1 ( n d ) f^{-1}(n)·f(1)=-\sum_{d|n,d=\not1}f(d)·f^{-1}(\frac nd) f1(n)f(1)=dn,d≠1f(d)f1(dn)

    <mstyle displaystyle="true" scriptlevel="0"> f 1 ( n ) = <munder> d n , d = <mpadded width="0px"> ̸ </mpadded> 1 </munder> f ( d ) f 1 ( n d ) f ( 1 ) </mstyle> \begin{aligned}f^{-1}(n)=\frac{-\sum_{d|n,d=\not1}f(d)·f^{-1}(\frac nd)}{f(1)}\end{aligned} f1(n)=f(1)dn,d≠1f(d)f1(dn)

  • 莫比乌斯函数

    f = ξ f=\xi f=ξ, p p p为质数

    f 1 ( 1 ) = 1 f^{-1}(1)=1 f1(1)=1

    f 1 ( p ) = f ( p ) f 1 ( 1 ) f ( 1 ) = 1 f^{-1}(p)=\frac{-f(p)·f^{-1}(1)}{f(1)}=-1 f1(p)=f(1)f(p)f1(1)=1

    f 1 ( p 2 ) = ( f ( p 2 ) f 1 ( 1 ) + f ( p ) f 1 ( p ) ) = 0 f^{-1}(p^2)=-(f(p^2)·f^{-1}(1)+f(p)·f^{-1}(p))=0 f1(p2)=(f(p2)f1(1)+f(p)f1(p))=0

    f 1 ( p 3 ) = ( f ( p 3 ) f 1 ( 1 ) + f ( p 2 ) f 1 ( p ) + f ( p ) f 1 ( p 2 ) ) = 0 f^{-1}(p^3)=-(f(p^3)·f^{-1}(1)+f(p^2)·f^{-1}(p)+f(p)·f^{-1}(p^2))=0 f1(p3)=(f(p3)f1(1)+f(p2)f1(p)+f(p)f1(p2))=0

    <mstyle displaystyle="true" scriptlevel="0"> f 1 ( p k ) = <munderover> i = 1 k </munderover> f ( p i ) f 1 ( p k i ) </mstyle> \begin{aligned}f^{-1}(p^k)=-\sum_{i=1}^k f(p^i)·f^{-1}(p^{k-i})\end{aligned} f1(pk)=i=1kf(pi)f1(pki)

    其中只有 f ( p k ) f 1 ( 1 ) = 1 , f ( p k 1 ) f 1 ( p ) = 1 f(p^k)·f^{-1}(1)=1,f(p^{k-1})·f^{-1}(p)=-1 f(pk)f1(1)=1,f(pk1)f1(p)=1,其余项都是0

    f 1 ( p k ) = { <mstyle displaystyle="false" scriptlevel="0"> 1 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> k = 1 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> 0 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> k &gt; 1 </mstyle> f^{-1}(p^k)=\left\{\begin{matrix}-1 &amp; k=1\\0 &amp; k&gt;1 \end{matrix}\right. f1(pk)={10k=1k>1

    n = p 1 a 1 p 2 a 2 p k a k n=p_1^{a_1}·p_2^{a_2}·\cdots p_k^{a_k} n=p1a1p2a2pkak

    所以莫比乌斯函数可以推出来了

    μ ( n ) = f 1 ( n ) = { <mstyle displaystyle="false" scriptlevel="0"> 1 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> n = 1 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> ( 1 ) k </mstyle> <mstyle displaystyle="false" scriptlevel="0"> a 1 = a 2 = = a k = 1 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> </mstyle> <mstyle displaystyle="false" scriptlevel="0"> 0 </mstyle> <mstyle displaystyle="false" scriptlevel="0"> o t h e r w i s e </mstyle> \mu(n)=f^{-1}(n)= \left\{\begin{matrix}1 &amp;n=1 \\(-1)^k &amp;a1=a2=\cdots =ak=1&amp;\Leftarrow 积性函数推出 \\ 0&amp;otherwise \end{matrix}\right. μ(n)=f1(n)=1(1)k0n=1a1=a2==ak=1otherwise


莫比乌斯函数的性质

  • μ ξ = I \mu*\xi=I μξ=I
    因为 μ = ξ 1 \mu=\xi^{-1} μ=ξ1
    所以有 <mstyle displaystyle="true" scriptlevel="0"> <munderover> d n n </munderover> μ ( d ) = <munderover> d n n </munderover> μ 1 = μ ξ ( n ) = I ( n ) = [ n = 1 ] </mstyle> \begin{aligned}\sum_{d|n}^n\mu(d)=\sum_{d|n}^n\mu·1=\mu*\xi(n)=I(n)=[n=1]\end{aligned} dnnμ(d)=dnnμ1=μξ(n)=I(n)=[n=1]
    记住这句,下面的证明要用到
  • I f = f I*f=f If=f
  • f μ ξ = f f*\mu*\xi=f fμξ=f
  • f ξ = g , f = g μ f*\xi=g,f=g*\mu fξ=g,f=gμ

线 线性筛 线

利用积性函数的性质以及 μ \mu μ的表达式

int cnt;
int prime[maxn],mu[maxn];
bool vis[maxn];
void mu_sieve (int n)
{
	mu[1]=1;
	for (int i=2;i<=n;++i){
		if (!vis[i]){	prime[++cnt]=i,mu[i]=-1;}
		for (int j=1;j<=cnt&&i*prime[j]<=n;++j){
			vis[i*prime[j]]=true;
			if (i%prime[j]==0){
				mu[i*prime[j]]=0;
				break;
			}
			mu[i*prime[j]]=-mu[i];
		}
	}
}


莫比乌斯反演

  • 若有 <mstyle displaystyle="true" scriptlevel="0"> g ( n ) = <munder> d n </munder> f ( d ) </mstyle> \begin{aligned}g(n)=\sum_{d|n}f(d)\end{aligned} g(n)=dnf(d)
    则有 <mstyle displaystyle="true" scriptlevel="0"> f ( n ) = <munder> d n </munder> μ ( d ) g ( n d ) = <munder> d n </munder> μ ( n d ) g ( d ) </mstyle> \begin{aligned}f(n)=\sum_{d|n}\mu(d)g(\frac{n}{d})=\sum_{d|n}\mu(\frac{n}{d})g(d)\end{aligned} f(n)=dnμ(d)g(dn)=dnμ(dn)g(d)

    • 证明

      法一 <mstyle displaystyle="true" scriptlevel="0"> <munder> d n </munder> μ ( d ) g ( n d ) = <munder> d n </munder> μ ( d ) <munder> x n d </munder> f ( x ) = <munder> x n </munder> f ( x ) <munder> d n x </munder> μ ( d ) = <munder> x n </munder> f ( x ) [ n x = 1 ] = f ( n ) </mstyle> \begin{aligned} \sum_{d|n}{\mu(d)g(\frac{n}{d})}=\sum_{d|n}{\mu(d)\sum_{x|\frac{n}{d}}{f(x)}}=\sum_{x|n}{f(x)}\sum_{d|\frac{n}{x}}{\mu(d)}=\sum_{x|n}{f(x)[\frac{n}{x}=1]}=f(n) \end{aligned} dnμ(d)g(dn)=dnμ(d)xdnf(x)=xnf(x)dxnμ(d)=xnf(x)[xn=1]=f(n)
      法二 g = f ξ , f = g μ g=f*\xi,f=g*\mu g=fξ,f=gμ
  • 若有 <mstyle displaystyle="true" scriptlevel="0"> g ( n ) = <munder> n d </munder> f ( d ) </mstyle> \begin{aligned}g(n)=\sum_{n|d}f(d)\end{aligned} g(n)=ndf(d)
    则有 <mstyle displaystyle="true" scriptlevel="0"> f ( n ) = <munder> n d </munder> μ ( d n ) g ( d ) </mstyle> \begin{aligned}f(n)=\sum_{n|d}\mu(\frac{d}{n})g(d)\end{aligned} f(n)=ndμ(nd)g(d)

    • 证明

      <mstyle displaystyle="true" scriptlevel="0"> <munder> n d </munder> μ ( d n ) g ( d ) = <munderover> k = 1 + </munderover> μ ( k ) g ( k n ) = <munderover> k = 1 + </munderover> μ ( k ) <munder> k n d </munder> f ( d ) = <munder> n d </munder> f ( d ) <munder> k d n </munder> μ ( k ) = <munder> n d </munder> f ( d ) [ d n = 1 ] = f ( n ) </mstyle> \begin{aligned}\sum_{n|d}\mu(\frac{d}{n})g(d)=\sum_{k=1}^{+\infty}\mu(k)g(kn)=\sum_{k=1}^{+\infty}\mu(k)\sum_{kn|d}f(d)=\sum_{n|d}f(d)\sum_{k|\frac{d}{n}}\mu(k)=\sum_{n|d}f(d)[\frac{d}{n}=1]=f(n) \end{aligned} ndμ(nd)g(d)=k=1+μ(k)g(kn)=k=1+μ(k)kndf(d)=ndf(d)kndμ(k)=ndf(d)[nd=1]=f(n)

    这一种一般用的比较多


莫比乌斯反演的应用

莫比乌斯函数一般用于 g c d gcd gcd
<mstyle displaystyle="true" scriptlevel="0"> <munderover> i = 1 n </munderover> <munderover> j = 1 m </munderover> gcd ( i , j ) </mstyle> <mstyle displaystyle="true" scriptlevel="0"> = <munderover> d m i n ( n , m ) </munderover> d <munderover> i = 1 n </munderover> <munderover> j = 1 m </munderover> [ g c d ( i , j ) = d ] </mstyle> <mstyle displaystyle="true" scriptlevel="0"> </mstyle> <mstyle displaystyle="true" scriptlevel="0"> = <munderover> d m i n ( n , m ) </munderover> d <munderover> i = 1 n d </munderover> <munderover> j = 1 m d </munderover> [ g c d ( i , j ) = 1 ] </mstyle> <mstyle displaystyle="true" scriptlevel="0"> </mstyle> <mstyle displaystyle="true" scriptlevel="0"> = <munderover> d m i n ( n , m ) </munderover> d <munderover> i = 1 n d </munderover> <munderover> j = 1 m d </munderover> <munder> k g c d ( i , j ) </munder> μ ( k ) </mstyle> <mstyle displaystyle="true" scriptlevel="0"> </mstyle> <mstyle displaystyle="true" scriptlevel="0"> = <munderover> d m i n ( n , m ) </munderover> d <munderover> k m i n ( n d , m d ) </munderover> μ ( k ) <munderover> k i n d </munderover> <munderover> k j m d </munderover> </mstyle> <mstyle displaystyle="true" scriptlevel="0"> </mstyle> <mstyle displaystyle="true" scriptlevel="0"> = <munderover> d m i n ( n , m ) </munderover> d <munderover> k m i n ( n d , m d ) </munderover> μ ( k ) n k d m k d </mstyle> \begin{aligned} \sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)&amp;=\sum_d^{min(n,m)} d\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=d] \\ &amp;=\sum_{d}^{min(n,m)}d\sum_{i=1}^{\frac nd}\sum_{j=1}^{\frac md}[gcd(i,j)=1] \\ &amp;=\sum_{d}^{min(n,m)}d\sum_{i=1}^{\frac nd}\sum_{j=1}^{\frac md}\sum_{k\mid gcd(i,j)}\mu(k) \\ &amp;=\sum_d^{min(n,m)} d\sum_k^{min(\frac{n}{d},\frac{m}{d})}\mu(k)\sum_{k\mid i}^{\frac nd}\sum_{k\mid j}^{\frac md} \\ &amp;=\sum_{d}^{min(n,m)}d\sum_k^{min(\frac{n}{d},\frac{m}{d})}\mu(k)\lfloor \frac n{kd}\rfloor \lfloor\frac m{kd}\rfloor \end{aligned} i=1nj=1mgcd(i,j)=dmin(n,m)di=1nj=1m[gcd(i,j)=d]=dmin(n,m)di=1dnj=1dm[gcd(i,j)=1]=dmin(n,m)di=1dnj=1dmkgcd(i,j)μ(k)=dmin(n,m)dkmin(dn,dm)μ(k)kidnkjdm=dmin(n,m)dkmin(dn,dm)μ(k)kdnkdm
T = k d T=kd T=kd
<mstyle displaystyle="true" scriptlevel="0"> <mtext>                              </mtext> = <munderover> T m i n ( n , m ) </munderover> n T m T <munder> k T </munder> T k μ ( k ) </mstyle> \begin{aligned} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\sum_{T}^{min(n,m)}\lfloor\frac nT\rfloor\lfloor\frac mT\rfloor\sum_{k\mid T}\frac Tk\mu(k)\end{aligned}                             =Tmin(n,m)TnTmkTkTμ(k)
以上是莫比乌斯反演推出来的式子

<mstyle displaystyle="true" scriptlevel="0"> <mtext>                              </mtext> = <munderover> T m i n ( n , m ) </munderover> n T m T φ ( T ) </mstyle> \begin{aligned}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\sum_{T}^{min(n,m)}\lfloor\frac nT\rfloor\lfloor\frac mT\rfloor\varphi(T)\end{aligned}                             =Tmin(n,m)TnTmφ(T)
这一步是欧拉反演,证明请移步欧拉函数|(扩展)欧拉定理|欧拉反演
当然,这里这个例子不如直接用欧拉反演
<mstyle displaystyle="true" scriptlevel="0"> <munderover> i = 1 n </munderover> <munderover> j = 1 m </munderover> gcd ( i , j ) </mstyle> <mstyle displaystyle="true" scriptlevel="0"> = <munderover> i = 1 n </munderover> <munderover> j = 1 m </munderover> <munder> d g c d ( i , j ) </munder> φ ( d ) = <munderover> d = 1 m i n ( n , m ) </munderover> n d m d φ ( d ) </mstyle> \begin{aligned}\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)&amp;=\sum_{i=1}^n\sum_{j=1}^m\sum_{d|gcd(i,j)}\varphi(d)=\sum_{d=1}^{min(n,m)}\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor\varphi(d)\end{aligned} i=1nj=1mgcd(i,j)=i=1nj=1mdgcd(i,j)φ(d)=d=1min(n,m)dndmφ(d)


如有哪里讲得不是很明白或是有错误,欢迎指正
如您喜欢的话不妨点个赞收藏一下吧

全部评论

相关推荐

北斗导航Compass低仿版:学历一般 没实习 非科班,肯定很难过初筛了,先找个中小厂好好干吧,拿这段实习去投大厂实习
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客企业服务