九宫格广度优搜索的c++算法实现
题意:
给出一个3*3的矩阵,数字0-8,问你能否通过移动组成给定的矩阵,给定矩阵如图所示:
1 2 3
4 5 6
7 8 0
样例:
input:
1 2 3
4 5 6
0 7 8
output:
移动的次数:2
移动的步骤:R->R
题解:
广度优先搜索
代码:
#include <bits/stdc++.h> using namespace std; const int N = 3; const int M = 9; const int dx[4] = {-1, 0, 1, 0}; const int dy[4] = {0, -1, 0, 1}; //const char dir[4] = {'U','L','D','R'}; const char dir[][10] = {"U->","L->","D->","R->"}; struct node { int f[M]; int space; string path; bool operator <(const node &p) const { for(int i = 0; i < M; i++) { if(f[i] == p.f[i]) continue; return f[i] > p.f[i]; } return false; } }; bool solve(node p) { for(int i = 0; i < M; i++) if(p.f[i] != (i+1)) return false; return true; } string bfs(node s) { queue<node> q; map<node, bool> V; node u, v; s.path = ""; q.push(s); V[s] = true; while(!q.empty()) { u = q.front(); q.pop(); if(solve(u)){ return u.path; } int sx = u.space / N; int sy = u.space % N; for(int r = 0; r < 4; r++) { int tx = sx + dx[r]; int ty = sy + dy[r]; if(tx < 0 || ty < 0 || tx >= N || ty >= N) continue; v = u; swap(v.f[u.space], v.f[tx*N + ty]); v.space = tx*N + ty; if(!V[v]) { V[v] = true; v.path += dir[r]; q.push(v); } } } return "not found"; } int main() { node a; for(int i = 0; i < M; i++){ cin >> a.f[i]; if(a.f[i] == 0){ a.f[i] = M; a.space = i; } } string ans = bfs(a); if(ans == "not found"){ cout<<"not found"<<endl; return 0; } cout<<"移动的次数:"<<ans.size()/3<< endl; cout<<"移动步骤:"; for(int i=0;i<ans.size()-2;i++) cout<<ans[i]; }