Redis

redis有哪些数据类型?

数据类型 可以存储的值 操作
STRING 字符串、整数或者浮点数 对整个字符串或者字符串的其中一部分执行操作 对整数和浮点数执行自增或者自减操作
LIST 列表 从两端压入或者弹出元素 对单个或者多个元素进行修剪, 只保留一个范围内的元素
SET 无序集合 添加、获取、移除单个元素 检查一个元素是否存在于集合中 计算交集、并集、差集 从集合里面随机获取元素
HASH 包含键值对的无序散列表 添加、获取、移除单个键值对 获取所有键值对 检查某个键是否存在
ZSET 有序集合 添加、获取、删除元素 根据分值范围或者成员来获取元素 计算一个键的排名

redis 主要有以下几种数据类型:

  • string
  • hash
  • list
  • set
  • sorted set

1.String

常用命令: set,get,decr,incr,mget 等。

String数据结构是简单的key-value类型,value其实不仅可以是String,也可以是数字。
常规key-value缓存应用;
常规计数:微博数,粉丝数等。

2.Hash

常用命令: hget,hset,hgetall 等。

hash 是一个 string 类型的 field 和 value 的映射表,hash 特别适合用于存储对象,后续操作的时候,你可以直接仅仅修改这个对象中的某个字段的值。 比如我们可以 hash 数据结构来存储用户信息,商品信息等等。比如下面我就用 hash 类型存放了我本人的一些信息:

key=JavaUser293847
value={
  “id”: 1,
  “name”: “SnailClimb”,
  “age”: 22,
  “location”: “Wuhan, Hubei”
}

3.List

常用命令: lpush,rpush,lpop,rpop,lrange等

list 就是链表,Redis list 的应用场景非常多,也是Redis最重要的数据结构之一,比如微博的关注列表,粉丝列表,消息列表等功能都可以用Redis的 list 结构来实现。

Redis list 的实现为一个双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销。

另外可以通过 lrange 命令,就是从某个元素开始读取多少个元素,可以基于 list 实现分页查询,这个很棒的一个功能,基于 redis 实现简单的高性能分页,可以做类似微博那种下拉不断分页的东西(一页一页的往下走),性能高。

4.Set

常用命令:
sadd,spop,smembers,sunion 等

set 对外提供的功能与list类似是一个列表的功能,特殊之处在于 set 是可以自动排重的。

当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set集合内的重要接口,这个也是list所不能提供的。可以基于 set 轻易实现交集、并集、差集的操作。

比如:在微博应用中,可以将一个用户所有的关注人存在一个集合中,将其所有粉丝存在一个集合。Redis可以非常方便的实现如共同关注、共同粉丝、共同喜好等功能。这个过程也就是求交集的过程,具体命令如下:

sinterstore key1 key2 key3     将交集存在key1内

5.Sorted Set

常用命令: zadd,zrange,zrem,zcard等

和set相比,sorted set增加了一个权重参数score,使得集合中的元素能够按score进行有序排列。

举例: 在直播系统中,实时排行信息包含直播间在线用户列表,各种礼物排行榜,弹幕消息(可以理解为按消息维度的消息排行榜)等信息,适合使用 Redis 中的 Sorted Set 结构进行存储。

redis主从复制了解吗,讲讲过程。

通过向从服务器发送 SLAVEOF 命令, 我们可以让一个从服务器去复制一个主服务器:

  • 主服务器创建快照文件,发送给从服务器,并在发送期间使用缓冲区记录执行的写命令。快照文件发送完毕之后 ,开始向从服务器发送存储在缓冲区中的写命令;

  • 从服务器丢弃所有旧数据,载入主服务器发来的快照文件,之后从服务器开始接受主服务器发来的写命令;

  • 主服务器每执行一次写命令,就向从服务器发送相同的写命令。

redis常见的问题有哪些?都怎么解决?

缓存雪崩和缓存穿透问题解决方案

缓存雪崩

简介:缓存同一时间大面积的失效,所以,后面的请求都会落到数据库上,造成数据库短时间内承受大量请求而崩掉。

解决办法(中华石杉老师在他的视频中提到过,视频地址在最后一个问题中有提到):

  • 事前:尽量保证整个 redis 集群的高可用性,发现机器宕机尽快补上。选择合适的内存淘汰策略。
  • 事中:本地ehcache缓存 + hystrix限流&降级,避免MySQL崩掉
  • 事后:利用 redis 持久化机制保存的数据尽快恢复缓存

缓存穿透

简介:一般是黑客故意去请求缓存中不存在的数据,导致所有的请求都落到数据库上,造成数据库短时间内承受大量请求而崩掉。

解决办法:
有很多种方法可以有效地解决缓存穿透问题:

  • 最常见的则是采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会 被这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。
  • 如果一个查询返回的数据为空(不管是数据不存在,还是系统故障),就写一个空值到缓存里去,比如 set -999 UNKNOWN。然后设置一个过期时间,这样的话,下次有相同的来访问的时候,在缓存失效之前,都可以直接 从缓存中取数据。

缓存击穿

简介:缓存击穿,就是说某个 key 非常热点,访问非常频繁,处于集中式高并发访问的情况,当这个 key 在失效的瞬间,大量的请求就击穿了缓存,直接请求数据库,就像是在一道屏障上凿开了一个洞。

解决办法:
可以将热点数据设置为永远不过期;或者基于 redis or zookeeper 实现互斥锁,等待第一个请求构建完缓存之后,再释放锁,进而其它请求才能通过该 key 访问数据。

参考:

如何解决 Redis 的并发竞争 Key 问题

  • 所谓 Redis 的并发竞争 Key 的问题也就是多个系统同时对一个key进行操作,但是最后执行的顺序和我们期望
    的顺序不同,这样也就导致了结果的不同!

  • 推荐一种方案:分布式锁(zookeeper 和 redis 都可以实现分布式锁)。(如果不存在 Redis 的并发竞争 Key 问题,不要使用分布式锁,这样会影响性能)

  • 基于zookeeper临时有序节点可以实现的分布式锁。大致思想为:每个客户端对某个方法加锁时,在zookeeper上 的与该方法对应的指定节点的目录下,生成一个唯一的瞬时有序节点。判断是否获取锁的方式很简单,只需要判 断有序节点中序号最小的一个。当释放锁的时候,只需将这个瞬时节点删除即可。同时,其可以避免服务宕机导 致的锁无法释放,而产生的死锁问题。完成业务流程后,删除对应的子节点释放锁。

  • 在实践中,当然是从以可靠性为主。所以首推Zookeeper。

参考:

如何保证缓存与数据库双写时的数据一致性?

一般来说,如果允许缓存可以稍微的跟数据库偶尔有不一致的情况,也就是说如果你的系统不是严格要求 “缓存+数据库” 必须保持一致性的话,最好不要做这个方案,即:读请求和写请求串行化,串到一个
内存队列里去。

串行化可以保证一定不会出现不一致的情况,但是它也会导致系统的吞吐量大幅度降低,用比正常情况下多几倍的机器去支撑线上的一个请求。

Redis 集群、哨兵机制

面试题

redis 集群模式的工作原理能说一下么?在集群模式下,redis 的 key是如何寻址的?分布式寻址都有哪些算法?
了解一致性 hash 算法吗?

面试官心理分析

在前几年,redis 如果要搞几个节点,每个节点存储一部分的数据,得借助一些中间件来实现,比如说有 codis,或者 twemproxy,都有。有一些 redis 中间件,你读写 redis 中间件,redis中间件负责将你的数据
分布式存储在多台机器上的 redis 实例中。

这两年,redis 不断在发展,redis 也不断有新的版本,现在的 redis 集群模式,可以做到在多台机器上,部署
多个 redis 实例,每个实例存储一部分的数据,同时每个 redis 主实例可以挂 redis 从实例,自动确保说,如
果 redis 主实例挂了,会自动切换到 redis 从实例上来。

现在 redis 的新版本,大家都是用 redis cluster 的,也就是 redis 原生支持的 redis集群模式,那么面试官
肯定会就 redis cluster 对你来个几连炮。要是你没用过 redis cluster,正常,以前很多人用 codis之类的
客户端来支持集群,但是起码你得研究一下 redis cluster 吧。

如果你的数据量很少,主要是承载高并发高性能的场景,比如你的缓存一般就几个 G,单机就足够了,可以使用 replication,一个 master 多个 slaves,要几个 slave 跟你要求的读吞吐量有关,然后自己搭建一个 sentinel 集群去保证 redis 主从架构的高可用性。

redis cluster,主要是针对海量数据+高并发+高可用的场景。redis cluster 支撑 N 个 redis master node,每个 master node 都可以挂载多个 slave node。这样整个 redis就可以横向扩容了。如果你要支撑
更大数据量的缓存,那就横向扩容更多的 master 节点,每个 master 节点就能存放更多的数据了。

面试题剖析

redis cluster 介绍

  • 自动将数据进行分片,每个 master 上放一部分数据
  • 提供内置的高可用支持,部分 master 不可用时,还是可以继续工作的

在 redis cluster 架构下,每个 redis 要放开两个端口号,比如一个是 6379,另外一个就是 加1w 的端口号,比如 16379。

16379 端口号是用来进行节点间通信的,也就是 cluster bus 的东西,cluster bus的通信,用来进行故障
检测、配置更新、故障转移授权。cluster bus 用了另外一种二进制的协议,gossip协议,用于节点间进行
高效的数据交换,占用更少的网络带宽和处理时间。

节点间的内部通信机制

基本通信原理

集群元数据的维护有两种方式:集中式、Gossip 协议。redis cluster 节点间采用 gossip 协议进行通信。

集中式是将集群元数据(节点信息、故障等等)几种存储在某个节点上。集中式元数据集中存储的一个典型代表,就是大数据领域的 storm。它是分布式的大数据实时计算引擎,是集中式的元数据存储的结构,底层基于 zookeeper(分布式协调的中间件)对所有元数据进行存储维护。

redis 维护集群元数据采用另一个方式, gossip协议,所有节点都持有一份元数据,不同的节点如果出现了
元数据的变更,就不断将元数据发送给其它的节点,让其它节点也进行元数据的变更。

集中式好处在于,元数据的读取和更新,时效性非常好,一旦元数据出现了变更,就立即更新到集中式的存储中,其它节点读取的时候就可以感知到;不好在于,所有的元数据的更新压力全部集中在一个地方,可能会导致元数据的存储有压力。

gossip 好处在于,元数据的更新比较分散,不是集中在一个地方,更新请求会陆陆续续打到所有节点上去更新,降低了压力;不好在于,元数据的更新有延时,可能导致集群中的一些操作会有一些滞后。

  • 10000 端口:每个节点都有一个专门用于节点间通信的端口,就是自己提供服务的端口号+10000,比如 7001,那么用于节点间通信的就是 17001 端口。每个节点每隔一段时间都会往另外几个节点发送 ping 消息,同时其它几个节点接收到 ping 之后返回 pong

  • 交换的信息:信息包括故障信息,节点的增加和删除,hash slot 信息等等。

gossip 协议

gossip 协议包含多种消息,包含 ping,pong,meet,fail 等等。

  • meet:某个节点发送 meet 给新加入的节点,让新节点加入集群中,然后新节点就会开始与其它节点进行通信。
redis-trib.rb add-node

其实内部就是发送了一个 gossip meet 消息给新加入的节点,通知那个节点去加入我们的集群。

  • ping:每个节点都会频繁给其它节点发送 ping,其中包含自己的状态还有自己维护的集群元数据,互相通过 ping 交换元数据。
  • pong:返回 ping 和 meeet,包含自己的状态和其它信息,也用于信息广播和更新。
  • fail:某个节点判断另一个节点 fail 之后,就发送 fail 给其它节点,通知其它节点说,某个节点宕机啦。

ping 消息深入

ping 时要携带一些元数据,如果很频繁,可能会加重网络负担。

每个节点每秒会执行 10 次 ping,每次会选择 5个最久没有通信的其它节点。当然如果发现某个节点通信延时
达到了 cluster_node_timeout / 2,那么立即发送ping,避免数据交换延时过长,落后的时间太长了。
比如说,两个节点之间都 10 分钟没有交换数据了,那么整个集群处于严重的元数据不一致的情况,就会有问题。所以 cluster_node_timeout 可以调节,如果调得比较大,那么会降低 ping 的频率。

每次 ping,会带上自己节点的信息,还有就是带上 1/10 其它节点的信息,发送出去,进行交换。至少包含 3 个其它节点的信息,最多包含 总节点数减 2 个其它节点的信息。

分布式寻址算法

  • hash 算法(大量缓存重建)
  • 一致性 hash 算法(自动缓存迁移)+ 虚拟节点(自动负载均衡)
  • redis cluster 的 hash slot 算法

hash 算法

来了一个 key,首先计算 hash 值,然后对节点数取模。然后打在不同的 master 节点上。一旦某一个 master 节点宕机,所有请求过来,都会基于最新的剩余 master节点数去取模,尝试去取数据。
这会导致大部分的请求过来,全部无法拿到有效的缓存,导致大量的流量涌入数据库。

一致性 hash 算法

一致性 hash 算法将整个 hash 值空间组织成一个虚拟的圆环,整个空间按顺时针方向组织,下一步将各个 master 节点(使用服务器的 ip 或主机名)进行 hash。这样就能确定每个节点在其哈希环上的位置。

来了一个 key,首先计算 hash 值,并确定此数据在环上的位置,从此位置沿环顺时针“行走”,遇到的第一个 master 节点就是 key 所在位置。

在一致性哈希算法中,如果一个节点挂了,受影响的数据仅仅是此节点到环空间前一个节点(沿着逆时针方向行走遇到的第一个节点)之间的数据,其它不受影响。增加一个节点也同理。

燃鹅,一致性哈希算法在节点太少时,容易因为节点分布不均匀而造成缓存热点的问题。为了解决这种热点问题,一致性 hash 算法引入了虚拟节点机制,即对每一个节点计算多个hash,每个计算结果位置都放置一个虚拟节点。这样就实现了数据的均匀分布,负载均衡。

redis cluster 的 hash slot 算法

redis cluster 有固定的 16384 个 hash slot,对每个 key 计算 CRC16 值,然后对 16384 取模,可以获取 key 对应的 hash slot。

redis cluster 中每个 master 都会持有部分 slot,比如有 3 个 master,那么可能每个 master 持有 5000 多个 hash slot。hash slot 让 node 的增加和移除很简单,增加一个 master,就将其他 master 的 hash slot 移动部分过去,减少一个 master,就将它的 hash slot 移动到其他 master 上去。移动 hash slot 的成本是非常低的。客户端的 api,可以对指定的数据,让他们走同一个 hash slot,通过 hash tag 来实现。

任何一台机器宕机,另外两个节点,不影响的。因为 key 找的是 hash slot,不是机器。

redis cluster 的高可用与主备切换原理

redis cluster 的高可用的原理,几乎跟哨兵是类似的。

判断节点宕机

如果一个节点认为另外一个节点宕机,那么就是pfail主观宕机。如果多个节点都认为另外一个节点宕机了,那么就是 fail客观宕机,跟哨兵的原理几乎一样,sdown,odown。

cluster-node-timeout 内,某个节点一直没有返回 pong,那么就被认为 pfail

如果一个节点认为某个节点 pfail 了,那么会在 gossip ping 消息中,ping给其他节点,
如果超过半数的节点都认为 pfail 了,那么就会变成 fail

从节点过滤

对宕机的 master node,从其所有的 slave node 中,选择一个切换成 master node。

检查每个 slave node 与 master node 断开连接的时间,如果超过了 cluster-node-timeout * cluster-slave-validity-factor,那么就没有资格切换成 master

从节点选举

每个从节点,都根据自己对 master 复制数据的 offset,来设置一个选举时间,offset越大(复制数据越多)的
从节点,选举时间越靠前,优先进行选举。

所有的 master node 开始 slave 选举投票,给要进行选举的 slave 进行投票,如果大部分 master node(N/2 + 1)都投票给了某个从节点,那么选举通过,那个从节点可以切换成 master。

从节点执行主备切换,从节点切换为主节点。

与哨兵比较

整个流程跟哨兵相比,非常类似,所以说,redis cluster 功能强大,直接集成了 replication 和 sentinel 的功能。

Redis 的持久化,RDB 和 AOF 的对比

Redis 是内存型数据库,为了保证数据在断电后不会丢失,需要将内存中的数据持久化到硬盘上。

RDB 持久化

将某个时间点的所有数据都存放到硬盘上。

可以将快照复制到其它服务器从而创建具有相同数据的服务器副本。

如果系统发生故障,将会丢失最后一次创建快照之后的数据。

如果数据量很大,保存快照的时间会很长。

AOF 持久化

将写命令添加到 AOF 文件(Append Only File)的末尾。

使用 AOF 持久化需要设置同步选项,从而确保写命令同步到磁盘文件上的时机。这是因为对文件进行写入并不会马上将内容同步到磁盘上,而是先存储到缓冲区,然后由操作系统决定什么时候同步到磁盘。有以下同步选项:

选项 同步频率
always 每个写命令都同步
everysec 每秒同步一次
no 让操作系统来决定何时同步
  • always 选项会严重减低服务器的性能;
  • everysec 选项比较合适,可以保证系统崩溃时只会丢失一秒左右的数据,并且 Redis 每秒执行一次同步对服务器性能几乎没有任何影响;
  • no 选项并不能给服务器性能带来多大的提升,而且也会增加系统崩溃时数据丢失的数量。

随着服务器写请求的增多,AOF 文件会越来越大。Redis 提供了一种将 AOF 重写的特性,能够去除 AOF 文件中的冗余写命令。

全部评论

相关推荐

10-17 10:05
已编辑
北华大学 全栈开发
牛客872465272号:掉头发了哥
点赞 评论 收藏
分享
贪食滴🐶:你说熟悉扣篮的底层原理,有过隔扣职业球员的实战经验吗
点赞 评论 收藏
分享
点赞 1 评论
分享
牛客网
牛客企业服务