Tensorflow 测试自己的目标检测与识别模型 (六)

Tensorflow 测试自己的目标检测与识别模型 (六)

在该文件下新建一个名为test.py的文件,其代码如下:

import numpy as np
import os
import sys
import tensorflow as tf
from matplotlib import pyplot as plt
from PIL import Image
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util

PATH_TO_CKPT = './data_set/ssd_inception_v2_coco/frozen_inference_graph.pb'
PATH_TO_LABELS = './label_map.pbtxt'     # 添加pbtxt文件的路径
NUM_CLASSES = 6      # 我的类别数为1, 这里根据自己的类别数修改

detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')
#Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

#Helper code
def load_image_into_numpy_array(image):
    (im_width, im_height) = image.size
    return np.array(image.getdata()).reshape(
        (im_height, im_width, 3)).astype(np.uint8)

PATH_TO_TEST_IMAGES_DIR = './test_images'  # 存放测试图片的路径
TEST_IMAGE_PATHS = [os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in
                    range(1, 69)]  # 修改测试图片的张数range(1, n + 1), 为测试图片的张数

IMAGE_SIZE = (12, 8)
with detection_graph.as_default():
    with tf.Session(graph=detection_graph) as sess:
        # Definite input and output Tensors for detection_graph
        image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
        # Each box represents a part of the image where a particular object was detected.
        detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
        # Each score represent how level of confidence for each of the objects.
        # Score is shown on the result image, together with the class label.
        detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
        detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
        num_detections = detection_graph.get_tensor_by_name('num_detections:0')
        for index,image_path in enumerate(TEST_IMAGE_PATHS):
            image = Image.open(image_path)
            # the array based representation of the image will be used later in order to prepare the
            # result image with boxes and labels on it.
            image_np = load_image_into_numpy_array(image)
            # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
            image_np_expanded = np.expand_dims(image_np, axis=0)
            image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
            # Each box represents a part of the image where a particular object was detected.
            boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
            # Each score represent how level of confidence for each of the objects.
            # Score is shown on the result image, together with the class label.
            scores = detection_graph.get_tensor_by_name('detection_scores:0')
            classes = detection_graph.get_tensor_by_name('detection_classes:0')
            num_detections = detection_graph.get_tensor_by_name('num_detections:0')
            # Actual detection.
            (boxes, scores, classes, num_detections) = sess.run(
                [boxes, scores, classes, num_detections],
                feed_dict={image_tensor: image_np_expanded})
            # Visualization of the results of a detection.
            vis_util.visualize_boxes_and_labels_on_image_array(
                image_np,
                np.squeeze(boxes),
                np.squeeze(classes).astype(np.int32),
                np.squeeze(scores),
                category_index,
                use_normalized_coordinates=True,
                line_thickness=6)
            plt.figure(figsize=IMAGE_SIZE)
            plt.axis('off')
            plt.imshow(image_np)
            #plt.show()
            imagename = "dete_" + str(index + 1) + ".jpg"
            #plt.savefig('./dete_images/' + imagename, format='jpg')
            plt.savefig('./dete_images_ssd_inception_v2_coco/'+ imagename,format='jpg')

其测试的结果保存在dete_images_ssd_inception_v2_coco文件夹下。

全部评论

相关推荐

11-15 19:28
已编辑
蚌埠坦克学院 硬件开发
点赞 评论 收藏
分享
小红书 后端选手 n*16*1.18+签字费期权
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务