随着遥感技术的飞速发展,遥感图像目标检测在资源勘探、城市规划、自然灾害评估等方面得到广泛应用.遥感影像背景复杂、目标尺度较小,难以检测.针对此问题,文中提出基于深度强化学习的遥感图像可解释目标检测方法.首先,将深度强化学习应用于超快速区域神经网络中的候选区域生成网络,修改激励函数,提高对遥感图像的检测精度.然后,将原有参数量较大的主干网络轻量化,提高方法的检测速度和可移植性.最后,利用网络解剖方法对隐层表征的可解释性进行量化,赋予方法人类理解的可解释性概念.实验表明,文中方法在3个公开的遥感数据集上的性能有所提升.通过改进的网络解剖方法进一步验证方法的有效性. ...