你从概率论开始学起,从一堆萌萌哒的排列组合方法,到除了马尔可夫,其他都不怎么用得上的随机过程。你从线性代数开始学起,从矩阵分解,到搞不太懂的各路加速gradient decent算法。后来你又学了svm,从推导出表达式到用拉格朗日乘子求解。你学linear regression,和它们基于极大似然的数学含义。你虽然看不懂记不住EM 的推导,但可以用EM结论推导Gaussian mixture model,还知道KNN是它方差为0时候的特殊形式。PCA是披上了外衣的low rank approximation ,pow iteration 其实是马尔可夫过程。你学bias和variance的物理...