Imagine that a holographic storage drive has been invented. Suppose that a holographic drive costs $10,000 and has an average access time of 40 milliseconds. Suppose that it uses a $100 cartridge the size of a CD. This cartridge holds 40,000 images, and each image is a square black-and-white picture with resolution 6000 x 6000 pixels (each pixel stores 1 bit). Suppose that the drive can read or write 1 picture in 1 millisecond. Answer the following questions.
a. What would be some good uses for this device?
b. How would this device affect the I/O performance of a computing system?
c. Which other kinds of storage devices, if any, would become obsolete as a result of this device being invented?
a. This device would find great demand in the storage of images, audio files, and other digital media.
b.Assuming that interconnection speed to this device would equal its throughput ability (that is, the other components of the system could keep it fed), large-scale digital load and store performance would be greaty enchanced. Manipulation time of the digital object would stay the same of course. The result would be greatly enhanced overall performance.
c.Currently, objects of that size are stored on optical media, tape media, and disk media. Presumably, demand for those would decrease as the holographic storage became available. There are likely to be uses for all of those media even in the presence of holographic storage, so it is unlikely that any would become obsolete. Hard disks would still be used for random access to smaller items (such as user files). Tapes would still be used for off-site, archiving, and disaster recovery uses, and optical disks (CDRW for instance) for easy interchange with other computers, and low cost bulk storage. Depending on the size of the holographic device, and its power requirements, it would also find use in replacing solid state memory for digital cameras, MP3 players, and hand-held computers.