首页
题库
公司真题
专项练习
面试题库
在线编程
面试
面试经验
AI 模拟面试
简历
求职
学习
基础学习课
实战项目课
求职辅导课
专栏&文章
竞赛
搜索
我要招人
发布职位
发布职位、邀约牛人
更多企业解决方案
在线笔面试、雇主品牌宣传
登录
/
注册
我是一个粉刷匠粉刷本领强
华东师范大学 Java
发布于上海
关注
已关注
取消关注
码一下
@蓦_然:
我的大数据开发学习之路
刚刚在牛客上搜“大数据开发学习路线”,正好搜到之前一个师弟的帖子,师弟当时学习路线基本上就是我以前学习时总结的路线。 这篇学习路线是当年我秋招完,根据自己学习的资料整理的,基本上是避开了不少坑。 在其他平台的一个数据: <stron> </stron> 因为牛客上不能放链接,所以我看过的一些视频、资料,这里就没放链接了。 一、前言 说在最前面,可能有些地方理解的不是很好,有不好的地方,望见谅,毕竟每个人想法不一样,不喜勿喷,谢谢~ 要从事计算机行业的工作,不管是什么工作,开发、测试、还是算法等,都是要有一门自己比较熟练的编程语言,编程语言可以是C语言、Java、C++等,只要是和你后续工作所相关的就可以(后续用到其他语言的话,你有一门语言基础了,学起来就快了)。一般初学者入门语言大多都会选择Java、C语言、C++或者Python,而且现在网上有很多好的视频,可以供初学者学习使用。关于学习视频或者资料的选择,知乎或者百度等都有很多讲解了,也可以跟师兄师姐咨询,这样可以少走很多弯路,当然,有人说,走一些弯路总是有好处的,但是我这里说的弯路不是说不犯错误,不调bug,而是指学习资料以及一些知识点的偏重点,这样可以尽量节约一部分时间,刚开始时,总会有点迷,而且当你真正投入进去学习时,会发现时间总是不够用。 我前面是做的Java后端开发,后续自己才转的大数据,所以一些Java开发所需要的东西自己也有学习过,也都是按照正常的路线走的,JavaSE阶段,然后数据库,SSM框架,接着做了一些网上找的项目,之后发现对大数据比较感兴趣,就开始找大数据相关的资料学习,看视频,看博客,敲代码,大概花了3-4个月吧,所以大数据学习的时间不是很长,不过也是一步步艰难走过来的,但是刚刚开始接触大数据相关的东西时,一度怀疑这么多东西自己能否学得完,是不是能用得到,学完又忘了,忘了又回头看,不过还好,坚持过来了,还好没有放弃,工作也还ok,找的大数据开发岗,待遇也还不错吧。 下面就说一下我自己从Java开发到大数据开发的曲折学习之路(狗头保命.jpg)。 因为是找大数据相关的工作了,所以Java后端涉及到的一些SSM框架等知识点就不介绍了,毕竟后续一段时间也没有做了。自己看过的大数据学习相关的视频+资料大概是200G-300G吧,从Linux->Hadoop->。。。->Spark->项目,还有就是一些面试文档,面经等。一些视频看了两遍或者更多,跟着学,跟着敲代码,做项目,准备面试。 涉及到需要学习的东西包括:JavaSE,数据结构与算法(计算机行业必备),MySQL,Redis,ES(数据库这些可以看项目,也可以自己熟练一两个),Linux,Shell(这个可以后期补),Hadoop,Zookeeper,Hive,Flume,Kafka,HBase,Scala(Spark是Scala写的,会Scala做相关的项目会更容易入手),Spark,Flink(这个是找工作时有面试官问过几次了不了解,所以找完工作才开始接触学习),相关项目。 放个大概的图吧 二、编程语言阶段 如果是零基础的话,建议还是从视频开始入门比较好,毕竟一上来就看教材,这样有些代码的来龙去脉可能不是很了解。如果是有一些编程语言基础的话,从视频开始也会更简单,一些for、while循环你都知道了,学起来也会快很多。 最初选择的是Java,选择Java是因为团队有师兄师姐是做Java开发的,有人可以前期指点下,不过C语言也有接触过。 JavaSE我是选择的黑马刘意的为主,因为刚刚开始学Java看过一本《Java从入门到精通》,没什么感觉,后续又在看了慕课网的Java初级视频,还是没感觉出来啥(当时就有点怀疑自己了~~~),可能有点没进入状态。 还好后续找了黑马刘意老师的JavaSE视频(我是看的2015年版本,那时候19版还没出),觉得他讲的真的是很好很详细,每个知识点都会有例子,也都会带你敲代码,做测试,可能前面有C语言基础,然后也看过Java的一些语法,所以学起来还是比较顺利,后面的IO流、多线程等知识点时,也有看书看博客,或者看看其他老师的课程,讲解的可能自己比较容易接受就可以,反正都是多尝试,尽量懂一些,后续可以回头来复习。JavaSE相关的视频,先看一遍,后续有时间建议再看一遍,而且这些经典的视频,看两遍真的是享受。 如果有一定基础了的,JavaSE前面七八天的视频可以加速看,但是不懂的一定要停下开仔细想想,零基础的还是尽量不要加速吧,慢慢来稳些。后面的视频建议还是跟着视频来,尽量不要加速,代码尽量都敲一敲,第一遍基本上一个月到一个半月可以结束。 JavaSE可以说是很基础也很重要的东西,主要重点包括面向对象、集合(List、Map等),IO流,String/StringBuilder/StringBuffer、反射、多线程,这些最好是都要熟悉一些,面试也是重点。 JavaSE之后,如果你是要走后端路线的话,可以跟着一些网上的视频继续学习,这里我就不多做介绍了。 Scala的学习,Scala是一门多范式 (multi-paradigm) 的编程语言,Scala支持面向对象和函数式编程,最主要的是后续Spark的内容需要用到Scala,所以前面学习了JavaSE,到Spark学习之前,再把Scala学习一波,美滋滋,而且Scala可以和Java进行无缝对接,混合使用,更是爽歪歪。后续Spark学习时基本都是用的Scala,也可能是和Java结合使用,所以Spark之前建议还是先学一波Scala,而且Scala用起来真是很舒服(wordcount一行代码搞定),适合迭代式计算,对数据处理有很大帮助,不过Scala看代码很容易看懂,但是学起来还是挺难的,比如样例类(case class)用起来真是nice,但是隐式转换学起来就相对比较难。学习Scala的建议:1. 学习scala 特有的语法,2. 搞清楚scala和java区别,3. 了解如何规范的使用scala。Scala对学习Spark是很重要的(后面Flink也是要用),虽然现在很多公司还是用Java开发比较多,而且Spark是Scala写的,如果要读源码,会Scala还是很重要的(至少要看得懂代码)。 Scala主要重点包括:隐式转换和隐式参数、模式匹配、函数式编程。这里我看的是尚硅谷韩老师的Scala视频,韩老师讲的真的很不错,五星推荐,哈哈。 也许有人会觉得Python也是需要的,但是学习阶段,可能用Java还是比较多,面试也基本都是问Java相关的内容,所以Python后续工作会用到的话,再看看Python的内容吧。 三、大数据框架 大数据这方面的知识点自己可以说真的是从零开始的,刚刚开始学那会Linux基本都没用过,心里那个虚啊,而且时间也紧迫,想起来都是一把辛酸泪。 刚刚开始学的时候,看了厦门大学林子雨的《 大数据技术原理与应用》课程,可能这个课程是面对上课的,所以看了一些,感觉对自己帮助不是很大(并不是说课程不好,可能不太适合自己,如果是要了解理论知识,很透彻,但是俺时间紧迫啊),所以就继续在网上找视频,然后发现尚硅谷的培训视频很多人去参加,而且知识点也很齐全,大数据相关组件都有讲课,还有一些项目比较好,所以就找了它相关的视频,看的是2018年的,所以视频不算旧。 来一张推荐系统架构的图,先看看 一般来说,Flume+Kafka对数据进行采集聚合传输,一方面Spark对实时数据进行处理,传输给相应的数据处理模块(比如实时数据处理的算法模块,Spark也有提供常见的机器学习算法的程序库),另一方面采集的数据也可以放入数据库(HBase、MongoDB等)中,后续MapReduce对离线数据进行离线处理,数据处理完毕用于后续的使用,数据采集处理的流程大概就是这样。如果是推荐系统,实时推荐会给用户产生实时的推荐结果,让用户进行查阅选择,比如你在界面浏览了或者看了新的物品,然后刷新下界面,可能给你展示的东西就有一些变成跟你刚刚浏览的相关了。离线推荐的话主要是对离线数据进行处理,为物品或种类做出相似的推荐,如果后续用户搜索相应的物品时,给用户展示相应的产品,比如你在淘宝搜索大数据书籍,淘宝会给你推荐相关的书籍,这就算是为大数据书籍产生的推荐结果。 1、Linux基本操作 一般我们使用的都是虚拟机来进行操作,所以要安装VM( Virtual Machine),我使用的是CentOS,所以VM和CentOS都要跟着安装好,跟着视频操作,一定要动手实践,将一些Linux基本命令熟练掌握,一些VIM编辑器的命令也要会用,做相应的一些配置,使用SecureCRT来做远程登录操作(也可以使用其他的,自己顺手就行)。再强调一遍,基本操作命令尽量熟练一点,如果一下记不住,打印一些常用的,自己看看,多用多实践,慢慢就会用了。还有一些软件包的下载安装卸载等,跟着操作一遍,熟悉下,后续都会使用,Shell编程可以后续补。 2、Hadoop Hadoop是一个分布式系统基础框架,用于主要解决海量数据的存储和海量数据的分析计算问题,也可以说Hadoop是后续整个集群环境的基础,很多框架的使用都是会依赖于Hadoop。主要是由HDFS、MapReduce、YARN组成。这个部分安装Hadoop,Hadoop的三个主要组成部分是重点,对他们的概念要理解出来,知道他们是做什么的,搭建集群环境,伪分布式模式和完全分布式模式的搭建,重要的是完全分布式的搭建,这些部分一定要自己动手实践,自己搭建集群,仔细仔细再仔细,Hadoop的NameNode,DataNode,YARN的启动关闭命令一定要知道,以及他们的启动关闭顺序要记住,不要搞混。后续视频会有一些案例操作,跟着写代码,做测试,把基本环境都配置好,后续这个集群(完全分布式需要三台虚拟机)要一直使用。 3、Zookeeper Zookeeper是一个开源的分布式的,为分布式应用提供协调服务的Apache项目。分布式安装ZK,对ZK有一定的了解就可以了,了解它的应用场景,以及内部原理,跟着做一些操作,基本上有一些了解即可。 4、Hive Hive是基于Hadoop的数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。Hive的安装,它的数据类型,以及它的数据定义、数据操作有较好的了解,怎么操作表(创建表、删除表,创建什么类型的表,他们有什么不同),怎么操作数据(加载数据,下载数据,对不同的表进行数据操作),对数据的查询一定要进行实践操作,以及对压缩方式和存储格式要有一些了解,用到时不懂也可以去查,最好是能理解清楚。这部分有什么面试可能会问,所以视频后续的面试讲解可以看看,理解清楚。 5、Flume Flume是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。对于Flume,对它的组成架构,以及对Flume Agent的内部原理要理解清楚,Source、Channel、Sink一定要知道它们的各种类型以及作用,有哪些拓扑结构是常见常用的,例如一对一,单Source、多Channel、多Sink等,它们有什么作用,要理解清楚。还有一个重点,就是对Flume的配置文件一定要了解清楚,不懂的可以上官网查看案例,对于不同的情况,它的配置文件要做相应的修改,才能对数据进行采集处理,视频中的实践案例一定要跟着做。 6、Kafka Kafka是一个分布式消息队列,缓存数据。比如说实时计算中可以通过Flume+Kafka对数据进行采集处理之后,Spark Streaming再使用Kafka相应的Topic中的数据,用于后续的计算使用。对于Kafka,要理解Kafka的架构,什么是Kafka,为什么需要Kafka,应用场景。基本的命令行操作要掌握,比如怎么创建删除Topic,怎么通过生产者生成数据,消费者怎么消费数据等基本操作,官网也是有一些案例可以查阅的。 7、HBase HBase是一个分布式的、基于列存储的开源数据库。HBase适合存储PB级别的海量数据,也可以说HBase是很适合大数据的存储的,它是基于列式存储数据的,列族下面可以有非常多的列,列族在创建表的时候就必须指定。所以对HBase的数据结构要有一定的理解,特别是RowKey的设计部分(因为面试被问到过,咳咳,所以点一下),对于它的原理要了解,一些基本操作也要都会,比如创建表,对表的操作,基本的API使用等。 8、Spark Spark是快速、易用、通用的大数据分析引擎。一说到Spark,就有一种哪哪都是重点感觉,哈哈。 Spark的组成可以看下图 Spark是基于内存计算的,对于数据的处理速度要比MapReduce快很多很多,而且数据挖掘这些都是要对数据做迭代式计算,MapReduce对数据的处理方式也不适合,而Spark是可以进行迭代式计算,很适合数据挖掘等场景。Spark的Spark SQL能够对结构化数据进行处理,Spark SQL的DataFrame或DataSet可以作为分布式SQL查询引擎的作用,可以直接使用Hive上的表,对数据进行处理。Spark Streaming主要用于对应用场景中的实时流数据进行处理,支持多种数据源,DStream是Spark Streaming的基础抽象,由一系列RDD组成,每个RDD中存放着一定时间段的数据,再对数据进行处理,而且是基于内存计算,速度快,所以很适合实时数据的处理。Spark MLlib提供常见的机器学习(ML)功能的程序库。包括分类、回归、聚类、协同过滤等,还提供了模型评估、数据 导入等额外的支持功能。对Spark的核心组件、部署模式(主要是Standalone模式和YARN模式)、通讯架构、任务调度要有一定了解(面试问到了可以说一波),Spark Shuffle要好好理解,还有内存管理要知道,对Spark的内核原理一定要好好理解,不仅面试可能要用,以后工作也是有帮助的。 9、Flink Flink是一个框架和分布式处理引擎,用于对无界(有开始无结束)和有界(有开始有结束)数据流进行有状态计算。Spark和Flink主要都是在数据处理方面应用,在数据处理方面的话,离线数据处理:Flink暂时比不上Spark,Spark SQL优点在于可以和Hive进行无缝连接,Spark SQL可以直接使用Hive中的表;Flink暂时做不到这一步,因为官方不支持这一操作,Flink只能将数据读取成自己的表,不能直接使用Hive中的表。对于实时数据的处理:Flink和Spark可以说是平分秋色吧,而且Flink是以事件为驱动对数据进行处理,而Spark是以事件为驱动对数据进行处理,在一些应用场景中,也许Flink的效果比Spark的效果还要好些,因为Flink对数据更加的敏感。比如一秒钟如果触发了成千上万个事件,那么时间驱动型就很难对数据做细致的计算,而事件驱动型可以以事件为单位,一个个事件进行处理,相比而言延迟更低,处理效果更好。 四、大数据项目 其实一些培训机构的视频里面有很多大数据相关的项目,学习期间可以跟着视频做两到三个项目,自己理清思路,把项目理解透彻,还是可以学到很多东西的。 根据自己情况,选择两到三个项目重点跟着做,理解透彻一点 大数据项目实战 某硅谷的视频里面有很多大数据相关的项目,而且都是文档配代码的,学习期间可以跟着视频做两到三个项目,自己理清思路,把项目理解透彻,还是可以学到很多东西的。根据自己情况,选择两到三个项目重点跟着做,理解透彻一点。相关项目文档资料我已经放到网盘,公众号回复相应关键字获取领取方式。 相关项目、涉及技术框架: 五、书籍 书籍部分,这里我放两张Java开发和大数据开发我自己的书单(很多,路漫漫,吾将上下而求索~) Java后端书架: 大数据书架: 大概就这些,大部分我也是需要的时候看相应的部分,所以有时间可以好好看下,不然就需要哪一部分看哪一部分,有助于学习即可。 六、结语 无论什么开发,都是需要编程基础的,并不是学会使用这些框架怎么样就可以了,所以对于编程语言,数据结构与算法,计算机网络这些基础也是要的,这些基础知识也有助于自己以后的发展,如果是应届生校招的话,面试基本上都是JavaSE和数据结构与算法等的知识点,还有大数据组件相关的知识点,以及对项目的理解,这些都是要自己面试前准备好的,多看面经,多找面试题看,面几次,心里有谱了,后续面试就好了。 不管是从事什么样的计算机相关的岗位,编程都是很重要的,数据结构与算法特别重要,还有就是leetcode刷题,提升自己的编程思维,后续笔试面试都要要的。 要将一行行代码看做一叠叠rmb,但是一行行代码能不能转换成一叠叠rmb,自己就一定要:坚持,多敲代码;多敲代码,坚持;坚持。 再加一句:以上纯属个人总结,也许有理解不是很好的地方,每个人都有自己的学习方法,不喜勿喷,谢谢~
点赞 89
评论 11
全部评论
推荐
最新
楼层
还没有回复哦~
相关推荐
11-22 16:39
已编辑
华中科技大学 光通信工程师
秋招就到这儿吧。
秋招真的是一场持久战,每一天都有不同的心情。。。 随着华为的审批保温,差不多整个秋招也就结束了。 BG:双九,保研,本硕都是电子信息类(光电方向),研究方向是光通信这一块。 秋招一共投递了17家公司,我的想法很明确,最后的最后的最后是希望能够做解决方案一类,也就是技术+销售结合的事儿。但这样的岗要求很高,基本很少校招,都是社招或内部研发输出一线这样的模式。所以我投递的岗包括技术岗和非技术岗。 收到面试邀请9家,获得offer(含保温)9家,已拿到8offer,预计9offer。面试通过率100%。所有的面经都在主页了,欢迎各位大佬指正批评。🙇 5月准备华为客经实习开始陆...
zachsun:
华科硕士给13级?有点逆天了吧
25届秋招总结
点赞
评论
收藏
分享
11-19 13:21
蚌埠坦克学院 嵌入式软件开发
以后你不要再打电话了,我怕夏洛误会
用了三年的小米手机,笔试完快一个月一直没消息,最后还被调岗位了米粉轻轻碎了,mate70我来了
待我拉个屎先:
面啊!小心华子给你泡不出来了,别all in啊
投递小米集团等公司10个岗位 >
牛客创作赏金赛
点赞
评论
收藏
分享
10-30 10:16
南京大学 Java
也是真让我碰上了
龚至诚:
给南大✌️跪了
点赞
评论
收藏
分享
10-15 16:27
门头沟学院 C++
感觉被侮辱了
😅
LeoMoon:
建议问一下是不是你给他付钱😅😅
点赞
评论
收藏
分享
今天 16:40
合肥学院 硬件产品经理
在华为上班真实体验
首先,关于加班这事儿,确实有狼性文化的说法,但并不是每个部门都在加班。我刚入职的时候,所在的部门基本上没加班,后来转到新业务,忙的时候确实有点多,偶尔也会熬夜到凌晨5点。 不过,假期请假都挺顺利的,领导人也很好,基本上都能请到假。每个月最后一个周六要上班,但可以调休或者换工资,算是个小福利吧。薪资方面,努力就能看到回报。虽然应届生的薪资没有想象中那么高,但在行业里算是中上等。经过几年的奋斗,升职加薪是很正常的事,发展快的同事也能当上小领导,带团队。
华为工作强度 802人发布
点赞
评论
收藏
分享
点赞成功,聊一聊 >
点赞
收藏
评论
分享
回复帖子
提到的真题
返回内容
全站热榜
1
...
双非本科四年的总结
1.6W
2
...
sagima的阎良出差日记
1.3W
3
...
给正在秋招中枯燥的大家找个乐子听听吧,不被理解真的心寒
1.1W
4
...
简历这样写真的很难挂
9302
5
...
请大家警惕“总包”骗局!
5931
6
...
大哥爆发了?
3916
7
...
秋招可以暂告一个段落啦
3704
8
...
忙完了工作,又要毕业论文……
3528
9
...
领导让我以后别叫他哥
3368
10
...
有奖征集|我想知道,你在秋招中最难忘的一个瞬间
3185
正在热议
#
25届秋招总结
#
275388次浏览
2359人参与
#
如果实习可以转正,你会不会放弃秋招
#
205747次浏览
2804人参与
#
北方华创开奖
#
24294次浏览
262人参与
#
地方国企笔面经互助
#
3157次浏览
7人参与
#
学历or实习经历,哪个更重要
#
46599次浏览
364人参与
#
选完offer后,你后悔学本专业吗
#
16045次浏览
120人参与
#
如何一边实习一边秋招
#
988719次浏览
12620人参与
#
数据人的面试交流地
#
436065次浏览
7810人参与
#
0offer是寒冬太冷还是我太菜
#
891653次浏览
7956人参与
#
软开人,秋招你打算投哪些公司呢
#
41224次浏览
533人参与
#
得物求职进展汇总
#
64562次浏览
672人参与
#
你觉得专业和学校哪个对薪资影响最大
#
28783次浏览
215人参与
#
你最想要的公司福利是?
#
43071次浏览
157人参与
#
查收我的offer竞争力报告
#
20898次浏览
262人参与
#
没有实习经历,还有机会进大厂吗
#
808457次浏览
13872人参与
#
来聊聊机械薪资天花板是哪家
#
67149次浏览
453人参与
#
当你面对裁员会如何?
#
26433次浏览
154人参与
#
应届生被毁约被毁意向了怎么办
#
28728次浏览
244人参与
#
一觉醒来,我觉醒了超级打工人系统
#
3515次浏览
36人参与
#
面试体验感最好的是哪家?
#
84066次浏览
821人参与
#
机械应届生薪资要多少才合适?
#
12625次浏览
61人参与
牛客网
牛客企业服务