腾讯

收藏
社交
10000人以上
上市
深圳
高校必争榜offer比较常胜榜HC充足榜校招高薪榜牛客指数榜
榜单高新技术

33

在招职位

5288

面试经验

66

真题试卷

查看官网
上传简历
此刻你想和大家分享什么
职位类型
全部
后端开发
前端开发
客户端开发
测试
数据
运维/技术支持
人工智能/算法
电子/半导体
产品
运营
游戏策划
风控
展开更多
最新
热门
方向是游戏引擎,投了米哈游,雷火,互娱,腾讯,鹰角,吉比特,情况如下:米哈游一面挂雷火oc互娱hr正在排序腾讯天美一面挂腾讯光子二面挂鹰角笔试放弃吉比特笔试放弃简单说下面试内容:米哈游一面其中面试最难,压力拉满的就是米哈游。当时面的我真的是胡言乱语了。我上一段实习主要方向是nanite和gpu driven,米哈游一面面试官对我做的内容非常了解,问的很细致和深入,面试过程中大部分都说不上来,让我意识到自己掌握的还不够扎实。米哈游面完导致我对自己陷入深深的自我怀疑,以至于后面面试都让我有些感到害怕了。面完就知道寄了,第二天就挂了。雷火一面雷火一面比较基础。几道简单的c++和图形题。然后一些基础的图形学八股。之后问了一些实习相关的问题,不是很深入,主要是探讨问题。雷火二面雷火二面压力也挺大的,面完以为要挂了,不过还是给我过了。主要问了nanite和gpu driven相关内容,有一些问题需要看过相关源码,没答上来。然后会让你思考一些性能优化的方法,让你描述下怎么去实现。然后问了移动端管线,subpass,性能测试等内容。雷火三面雷火三面问了些场景题,问喜欢玩的游戏,然后问fps游戏里一些效果怎么实现的,怎么做到帧率那么高的。互娱一面互娱一面的体验巨好。面试官很亲切,然后对于实习工作真的是和你在讨论而不是在质问你。对我实习工作他说出了一些问题,然后还说不是我的错,是我负责人没考虑好😂给我感动坏了。然后问了一些常规八股,当时有问题没答上来,他也说没关系,都是些八股多背背就会了。互娱二面互娱二面一上来主要问的也是前一段实习做的内容。然后也是一些场景和一些需求让你自己思考怎么去实现。天美一面和前面面试大差不差,都是实习+八股。做了几道题。跟面试官说深圳不一定会去,面完就挂了。光子一面实习+八股,做了一道题。光子二面实习+八股。接了雷火offer,让面试官结束流程了。#实习进度记录#  #牛客AI配图神器#
查看14道真题和解析 实习进度记录
点赞 评论 收藏
分享
昨天 00:24
腾讯_HR
腾讯-混元大模型面经-华5硕-主页内tui❗❗腾讯26届春招提前批/26届暑期实习生/日常实习生/25届补录招聘启动 | 所有专业类型均有岗位🏅中国民营企业500强排行榜第6位【在招岗位】1. 技术类:软件开发、技术运营、安全技术、测试与质量管理、技术研究、解决方案与服务、硬件开发2. 产品类:游戏产品、内容制作、通用产品、金融产品、项目管理3. 设计类:游戏美术、平面交互4. 市场类:战略投资、市场营销、公共关系、销售拓展5. 职能类:财经分析、人力资源、法律与公共政策、行政支持【招聘范围】应届生(24届、25届可投)、实习生(在校生可投)、青云计划(23届/24届/25届博士、24届/25届硕士)【网申链接】https://join.qq.com/resume.html?k=ANQI6RfQ3rhPS2dpyIkeSw腾讯-混元大模型面经-华5硕部门与岗位:TEG - 混元大模型团队 - 大模型对齐一面自我介绍,过实习,讲论文,论文过的比较细,有说的笼统的地方面试官会实时进行询问交流了解哪些大模型,简要挑一两个介绍一下,当时说了 Qwen 和 DeepSeek,然后面试官又问了这两个有什么区别接着上一问,为什么大家都开始探索 MoE 架构,MoE 相比 Dense 有什么好处在之前实习的时候用 LoRA 微调过 Qwen,于是问了有没有全量微调过,有没有对比过两者的性能表现讲一下大模型训练和推理的流程,SFT 和 RLHF 的作用分别是什么在 RLHF 中,目前主流的强化学习算法有哪几个,写一下损失函数的表达式代码:22. 括号生成代码:多头自注意力一面问的八股还是比较多的,问的也比较细,而且还写了两道代码题,整个面试花的时间也比较多,大概一个半小时左右二面自我介绍,过实习和论文,面试官会一起进行探讨,包括工作的动机、贡献和结果,也会提一些问题和建议之前实习用 DeepSpeed 微调过 Qwen2-72B,于是面试官问了 ZeRO-1,ZeRO-2,ZeRO-3 三个模式的区别当时你用 DeepSpeed ZeRO-3 来微调 Qwen2-72B,每一张卡占用的显存大概是多少,估算一下为什么是占这么多的显存除了 DeepSpeed,还用过其他的什么优化方法吗我看你也用到了 LoRA,知道 LoRA 的原理吗,A 和 B 两个矩阵怎么初始化,有了解过其他的初始化方法吗对 RLHF 了解的多吗代码:3. 无重复字符的最长子串二面更多的是结合具体的工作来问的,从用到的东西来引出问题,问的也比较灵活。当然因为部门主要是做对齐的,所以也大概聊了聊 RLHF三面自我介绍,挑一个觉得做的比较好的论文和实习讲一下,面试官问的比较详细,为什么选现在这种方案,为什么 work,其他方案有考虑吗在微调 Qwen 的时候,数据是怎么构造的,有用到什么数据清洗方法吗,数据配比是怎么做的讲一下 RLHF 的流程,之前有用 RLHF 做过模型对齐吗在做对齐的时候,为什么 SFT 之后还要做 RLHF,只用 SFT 可以吗知道哪些强化学习算法,除了 PPO 和 DPO 这些呢,DeepSeek 用的 GRPO 相比于 GPT 的 PPO 做了哪些改进开放题:对目前大模型的发展有什么看法代码:零钱的两个题 322. 零钱兑换518. 零钱兑换 II三面面试官更聚焦于对齐这一块的内容,考的比较深。由于之前没有接触过强化学习,答得还是比较吃力的,不过面试官还挺好的,会一起讨论来做引导四面自我介绍,过论文和实习,问的也比较细,这里能明显的感受出来面试官的视角更系统,会把这些工作串起来问我看你简历上没写 RLHF,平常有用过 RLHF 吗推导一下神经网络反向传播的过程一道排列组合的概率题开放题:你觉得大模型目前还有哪些可以改进的点四面整体更看重思维和基础,没有考察什么八股总结一共四轮技术面,整体来说强度比较大,对于大模型八股的考察比较细,对大模型的理解问的也比较深刻,包括一些数理逻辑基础,考察的比较全面#26届实习##大模型##八股##面经##腾讯##内推#
腾讯
|
实习
|
超多精选岗位
点赞 评论 收藏
分享
模拟面试
真实面试体验,快速补齐短板
应聘感受
暂无应聘感受
牛客网
牛客企业服务