大模型面经每日总结

BP16 和 FP16 在存储结构、精度表现、数值范围以及适用场景方面有什么不同?

  • 训练时使用bf16更稳定,表示范围大,并且自带隐式正则化buffer;
  • 推理时使用fp16比bf16更好,因为fp16表示精度高。 https://www.zhihu.com/question/616600181/answer/3194881239

怎么解决训练使用float16导致溢出的问题?

  • 使用 缩放因子 trick
  • 混合精度训练

kv-cache的作用

  • 一种缓存技术,通过存储键值对的形式来复用计算结果,以达到提高性能和降低内存消耗

量化方法的分类

  • 按量化对象分:KV Cache量化、模型权重量化、激活值量化-按量化阶段分:
  • 量化感知训练(QAT)、量化感知微调(QAF)、训练后量化(PTQ)【大模型常用】

AWQ 量化和 KV Cache量化 有什么不同

  • AWQ 更侧重于在模型权重存储和计算中
  • KV Cache量化 更适用于长上下文推理和并发场景参考

https://blog.51cto.com/u_15912723/12361929

常见推理框架有哪些,有什么异同

  • Slang,TensorRT,vLLM,LMDeploy 等可以从适用场景、生态、易用性,功能性进行对比 https://www.bentoml.com/blog/benchmarking-llm-inference-backends https://medium.com/better-programming/frameworks-for-serving-llms-60b7f7b23407 https://waytoagi.feishu.cn/wiki/RUI3wNlzeiF0SZkk5pWcdVfCnGc

日拱一卒~

全部评论

相关推荐

腾讯NLP 1.跨模态对齐有哪些方式?为何逐渐不使用Q-Former?2. Baichuan2 - 7B模型架构是怎样的?其位置编码如何实现?与Qwen家的位置编码实现有何不同?3. 了解Qwen - VL吗?其架构如何?有何独特之处?4. Adapter、P - tuning和Lora之间的区别与联系是什么?5. 数据集如何构建与评测?6. 数据集评估过程中遇到哪些困难?如何解决?7. RAG检索内容是否相关?有无进行Rerank或其他操作?8. 对Agent有何看法?9. 了解强化学习DPO吗?与PPO有何区别?有什么好处?10. 谈一谈大模型完整训练过程及每一阶段的作用。混元大模型团队1.Qwen 和 DeepSeek 有什么区别?2.为何大家都开始探索 MoE 架构?MoE 相比 Dense 有什么好处?3.用 LoRA 微调过 Qwen,是否全量微调过?两者性能表现有何对比?4.用 DeepSpeed 微调过 Qwen2 - 72B,ZeRO - 1、ZeRO - 2、ZeRO - 3 三个模式的区别是什么?用 DeepSpeed ZeRO - 3 微调 Qwen2 - 72B 时,每一张卡占用显存大概是多少?为什么?5.除了 DeepSpeed,还用过哪些优化方法?6.知道 LoRA 的原理吗?A 和 B 两个矩阵怎么初始化?了解过其他初始化方法吗?7.讲一下大模型训练和推理的流程,SFT 和 RLHF 的作用分别是什么?8.在 RLHF 中,目前主流的强化学习算法有哪几个?写出损失函数的表达式。9.对 RLHF 了解多少?讲一下 RLHF 的流程。之前有用 RLHF 做过模型对齐吗?在做对齐时,为什么 SFT 之后还要做 RLHF?只用 SFT 可以吗?10.知道哪些强化学习算法?除了 PPO 和 DPO,DeepSeek 用的 GRPO 相比于 GPT 的 PPO 做了哪些改进?11.微调 Qwen 时,数据是怎么构造的?有用到什么数据清洗方法?数据配比是怎么做的?CSIG腾讯地图1. 进行自我介绍,聊简历上和大模型相关的项目(约5分钟)。2. 讲一下LORA的基本原理。3. 了解主流的开源大模型吗?如Llama、Qwen、deepseek。4. 对Python的熟悉程度如何,能用pytorch写一下多头注意力机制吗?5. C++的代码能力情况(较随意聊) 。6. 手撕代码:反转链表和合并有序链表。7. 反问问题:    - 腾讯地图做的大模型应用是什么?    - 对Manus的看法是什么? 百度文心一言1. PPO 与 GRPO 的区别,分别介绍它们的优势与缺点。2.DPO 对齐训练的曲线是怎么样的,正例的概率会提升吗?参考这个知乎回答。3.Deepseek - R1 里面不仅推理能力很好,而且文采能力也很好,这是个开放问题,如何让模型的文采能力也很好呢?4.deepseed 介绍。5.deepspeed 的每一段的通信比较,zero3 分别是 0 和 2 的多少倍,1.5 倍。6.DPO 如何解决回答过长的问题,除了正则。7.开放问题:为什么现在大家都在关注于大模型的推理能力 reasoning。8.对于一个 base model 如何增强大模型的 reasoning 能力。9.DPO 除了长度问题还有其他的问题吗?与问题 2 对应,reward hacking?都没有奖励模型了。10.说一下 simpo 的原理,它是怎么解决 dpo 微调序列过长的问题的。minimax1.大模型算法中模型参数量每个部分有多少?2.你了解哪些评估 minimax 大模型算法的手段?3.如何评估 minimax 大模型算法中多模态模型的输出质量?4.对于 minimax 大模型算法的数据集,如何提高质量?如何利用 gpt 辅助提升数据集质量?5.有哪些方法可以提升 minimax 大模型算法中预训练模型的质量?
点赞 评论 收藏
分享
03-26 13:17
腾讯_HR
部门与岗位:TEG - 混元大模型团队 - 大模型对齐一面自我介绍,过实习,讲论文,论文过的比较细,有说的笼统的地方面试官会实时进行询问交流了解哪些大模型,简要挑一两个介绍一下,当时说了 Qwen 和 DeepSeek,然后面试官又问了这两个有什么区别接着上一问,为什么大家都开始探索 MoE 架构,MoE 相比 Dense 有什么好处在之前实习的时候用 LoRA 微调过 Qwen,于是问了有没有全量微调过,有没有对比过两者的性能表现讲一下大模型训练和推理的流程,SFT 和 RLHF 的作用分别是什么在 RLHF 中,目前主流的强化学习算法有哪几个,写一下损失函数的表达式代码:22. 括号生成代码:多头自注意力一面问的八股还是比较多的,问的也比较细,而且还写了两道代码题,整个面试花的时间也比较多,大概一个半小时左右二面自我介绍,过实习和论文,面试官会一起进行探讨,包括工作的动机、贡献和结果,也会提一些问题和建议之前实习用 DeepSpeed 微调过 Qwen2-72B,于是面试官问了 ZeRO-1,ZeRO-2,ZeRO-3 三个模式的区别当时你用 DeepSpeed ZeRO-3 来微调 Qwen2-72B,每一张卡占用的显存大概是多少,估算一下为什么是占这么多的显存除了 DeepSpeed,还用过其他的什么优化方法吗我看你也用到了 LoRA,知道 LoRA 的原理吗,A 和 B 两个矩阵怎么初始化,有了解过其他的初始化方法吗对 RLHF 了解的多吗代码:3. 无重复字符的最长子串二面更多的是结合具体的工作来问的,从用到的东西来引出问题,问的也比较灵活。当然因为部门主要是做对齐的,所以也大概聊了聊 RLHF三面自我介绍,挑一个觉得做的比较好的论文和实习讲一下,面试官问的比较详细,为什么选现在这种方案,为什么 work,其他方案有考虑吗在微调 Qwen 的时候,数据是怎么构造的,有用到什么数据清洗方法吗,数据配比是怎么做的讲一下 RLHF 的流程,之前有用 RLHF 做过模型对齐吗在做对齐的时候,为什么 SFT 之后还要做 RLHF,只用 SFT 可以吗知道哪些强化学习算法,除了 PPO 和 DPO 这些呢,DeepSeek 用的 GRPO 相比于 GPT 的 PPO 做了哪些改进开放题:对目前大模型的发展有什么看法代码:零钱的两个题 322. 零钱兑换518. 零钱兑换 II三面面试官更聚焦于对齐这一块的内容,考的比较深。由于之前没有接触过强化学习,答得还是比较吃力的,不过面试官还挺好的,会一起讨论来做引导四面自我介绍,过论文和实习,问的也比较细,这里能明显的感受出来面试官的视角更系统,会把这些工作串起来问我看你简历上没写 RLHF,平常有用过 RLHF 吗推导一下神经网络反向传播的过程一道排列组合的概率题开放题:你觉得大模型目前还有哪些可以改进的点四面整体更看重思维和基础,没有考察什么八股总结一共四轮技术面,整体来说强度比较大,对于大模型八股的考察比较细,对大模型的理解问的也比较深刻,包括一些数理逻辑基础,考察的比较全面需要内推码的可以用下面这个链接:内推链接:https://join.qq.com/resume.html?k=ANQI6RfQ3rhPS2dpyIkeSw#26届实习##大模型##八股##面经##腾讯##内推#
腾讯
|
实习
|
超多精选岗位
点赞 评论 收藏
分享
评论
点赞
8
分享

创作者周榜

更多
牛客网
牛客企业服务