题解 | #杨辉三角的变形#
杨辉三角的变形
https://www.nowcoder.com/practice/8ef655edf42d4e08b44be4d777edbf43
# 我的评价是赖皮 证明的要求远大于程序实现 # 从第三行开始 首位偶数的位置表现为1,3,2,4,……并循环 n = int(input()) if n <=2: print(-1) else: tmp = (n-2)%4 if tmp == 1 or tmp == 3: print(2) elif tmp == 2: print(3) else: print(4) # # 第2层开始 12321起 每层0-3位元素必有至少一个偶数 # # 只计算前4列 # n = int(input()) # # 表示层数 # if n < 4: # if n <= 2: # print(-1) # if n == 3: # print(1) # else: # # n = 4 开始 考虑a3 # a1 = n - 1 # a2 = (n-1) * (n) / 2 # a3 = 7 # if n > 4: # # 第5层开始考虑a3累加 # for i in range(4 + 1, n+1): # a3 += (i-2) + (i-2)*(i-1)/2 # # 上一层的a1 a2 # # print(a1) # # print(a2) # # print(a3) # if a1 % 2 == 0: # print(2) # elif a2 % 2 == 0: # print(3) # elif a3 % 2 == 0: # print(4) # n = int(input()) # # 表示层数 # tower = [[1]] # for i in range(n-1): # tower.append([]) # # 创建n层塔 # for i in range(1, n): # # 开始填充 # for j in range(i+1): # # 只用输出一半 # tmp_l = 0 # # 左位 # tmp_m = 0 # # 中位 # tmp_r = 0 # # 右位 # # 填充第i层第j位 从0开始 # # print(f'i:{i} j:{j}') # tmp = 0 # try: # # print(1) # tmp_l = tower[i-1][j-2] # if j < 2: # tmp_l = 0 # except: # # print(2) # tmp_l = 0 # try: # tmp_m = tower[i-1][j-1] # if j < 1: # tmp_m = 0 # except: # tmp_m = 0 # try: # tmp_r = tower[i-1][j] # if j == i: # tmp_r = tmp_l # except: # tmp_r = 0 # if j == i: # tmp_r = tmp_l # tmp = tmp_l + tmp_m + tmp_r # # print(f'tmp_l :{tmp_l }') # # print(f'tmp_m :{tmp_m }') # # print(f'tmp_r :{tmp_r }') # # print(f'tmp : {tmp}') # tower[i].append(tmp) # for i in range(len(tower[n-1])): # tmp_0 = -1 # for j in range(len(tower[i])): # if tower[i][j] % 2 == 0: # tmp_0 = j+1 # break # print(tmp_0, end=' ') # print(tower[i]) # tmp_0 = -1 # for i in range(len(tower[n-1])): # if tower[n-1][i] % 2 == 0: # tmp_0 = i+1 # break # print(tmp_0)