从零开始构建一个电影知识图谱,实现KBQA智能问答[下篇]:

从零开始构建一个电影知识图谱,实现KBQA智能问答[下篇]:Apache jena SPARQL endpoint及推理、KBQA问答Demo超详细教学

效果展示:

1.Apache jena SPARQL endpoint及推理

在上一篇我们学习了如何利用 D2RQ 来开启 endpoint 服务,但它有两个缺点:

  1. 不支持直接将 RDF 数据通过 endpoint 发布到网络上。

  2. 不支持推理。

这次我们介绍的 Apache Jena 能够解决上面两个问题。

1.1.Apache Jena 简介

Apache Jena(后文简称 Jena),是一个开源的 Java 语义网框架(open source Semantic Web Framework for Java),用于构建语义网和链接数据应用。下面是 Jena 的架构图:

本次实践我们会用到的组件有:TDB、rule reasoner 和 Fuseki。

  1. TDB 是 Jena 用于存储 RDF 的组件,是属于存储层面的技术。在单机情况下,它能够提供非常高的 RDF 存储性能。目前 TDB 的最新版本是 TDB2,且与 TDB1 不兼容。

  2. Jena 提供了 RDFS、OWL 和通用规则推理机。其实 Jena 的 RDFS 和 OWL 推理机也是通过 Jena 自身的通用规则推理机实现的。

  3. Fuseki 是 Jena 提供的 SPARQL 服务器,也就是 SPARQL endpoint。其提供了四种运行模式:单机运行、作为系统的一个服务运行、作为 web 应用运行或者作为一个嵌入式服务器运行。

Jena 目前是使用最广泛、文档最全、社区最活跃的一个开源语义网框架。更多的细节,读者可以参考官方文档。

1.2.Fuseki 与 OWL 推理实战

我们先下载 Jena 的最新版本(fuseki 和其他的功能模块不在同一个文件中,需要分别下载 apache-jena 和 apache-jena-fuseki)。后续操作以 Windows 为例,Linux 类似,只是脚本位置不同。

创建一个目录(我这里命名为 “tdb”)用于存放 tdb 数据。进入“apache-jena-X.X.X” 文件夹的 bat 目录,可以看到很多批处理文件,我们使用 “tdbloader.bat” 将之前我们的 RDF 数据以 TDB 的方式存储。命令如下:

.\tdbloader.bat --loc="D:\apache jena\tdb" "D:\d2rq\kg_demo_movie.nt"

“--loc” 指定 tdb 存储的位置,即刚才我们创建的文件夹;第二个参数是由 Mysql 数据转换得到的 RDF 数据。

进入入 “apache-jena-fuseki-X.X.X” 文件夹,运行 “fuseki-server.bat”,然后退出。程序会为我们在当前目录自动创建“run” 文件夹。将我们的本体文件 “ontology.owl” 移动到 “run” 文件夹下的 “databases” 文件夹中,并将 “owl” 后缀名改为 “ttl”。在“run” 文件夹下的 “configuration” 中,我们创建名为 “fuseki_conf.ttl” 的文本文件(取名没有要求),加入如下内容:

@prefix :      <http://base/#> .
@prefix tdb:   <http://jena.hpl.hp.com/2008/tdb#> .
@prefix rdf:   <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix ja:    <http://jena.hpl.hp.com/2005/11/Assembler#> .
@prefix rdfs:  <http://www.w3.org/2000/01/rdf-schema#> .
@prefix fuseki: <http://jena.apache.org/fuseki#> .


:service1        a                fuseki:Service ;
fuseki:dataset                    <#dataset> ;
fuseki:name                       "kg_demo_movie" ;
fuseki:serviceQuery               "query" , "sparql" ;
fuseki:serviceReadGraphStore      "get" ;
fuseki:serviceReadWriteGraphStore "data" ;
fuseki:serviceUpdate              "update" ;
fuseki:serviceUpload              "upload" .


<#dataset> rdf:type ja:RDFDataset ;
    ja:defaultGraph <#model_inf> ;
    .

<#model_inf> a ja:InfModel ;
    ja:baseModel <#tdbGraph> ;

    #本体文件的路径
    ja:content [ja:externalContent <file:///D:/apache%20jena/apache-jena-fuseki-3.5.0/run/databases/ontology.ttl> ] ;
    
    #启用OWL推理机
    ja:reasoner [ja:reasonerURL <http://jena.hpl.hp.com/2003/OWLFBRuleReasoner>] .

<#tdbGraph> rdf:type tdb:GraphTDB ;
    tdb:dataset <#tdbDataset> ;
    .

<#tdbDataset> rdf:type tdb:DatasetTDB ;
    tdb:location "D:/apache jena/tdb" ;
    .

再次运行 “fuseki-server.bat”,如果出现如下界面表示运行成功:

Fuseki 默认的端口是 3030,浏览器访问 “http://localhost:3030/”, 和之前介绍的 D2RQ web 界面类似,我们可以进行 SPARQL 查询等操作。在 Python 中用 SPARQLWrapper 向 Fuseki server 发送查询请求:

PREFIX : <http://www.kgdemo.com#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT * WHERE {
?x :movieTitle '功夫'.
?x ?p ?o.
}

即查询电影《功夫》的所有属性。返回的结果:

                            x                                            p                                  o      
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasGenre   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#genre/14  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasGenre   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#genre/28  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasGenre   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#genre/35  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasGenre   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#genre/80  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.w3.org/1999/02/22-rdf-syntax-ns#type   http://www.kgdemo.com#Movie  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#movieRating   7.2E0  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#movieIntroduction   1940年代的上海,自小受尽欺辱的街头混混阿星(周星驰)为了能出人头地,可谓窥见机会的缝隙就往里钻,今次他盯上行动日益猖獗的黑道势力“斧头帮”,想借之大名成就大业。  阿星假冒“斧头帮”成员试图在一个叫“猪笼城寨”的地方对居民敲诈,不想引来真的“斧头帮”与“猪笼城寨”居民的恩怨。“猪笼城寨”原是藏龙卧虎之处,居民中有许多身怀绝技者(元华、梁小龙等),他们隐藏于此本是为远离江湖恩怨,不想麻烦自动上身,躲都躲不及。而在观战正邪两派的斗争中,阿星逐渐领悟功夫的真谛。  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#movieTitle   功夫  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#movieReleaseDate   2004-02-10  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.w3.org/1999/02/22-rdf-syntax-ns#type   http://www.w3.org/2002/07/owl#Thing  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasActor   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/25251  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasActor   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/57609  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasActor   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/118745  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasActor   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/57607  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasActor   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/65975  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasActor   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/78878  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasActor   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/83635  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasActor   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/119426  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasActor   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/545277  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasActor   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/576408  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasActor   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/1136808  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasActor   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/1173200  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasActor   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/1173216  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasActor   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/1173223  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasActor   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/1173224  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasActor   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/1287732  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.kgdemo.com#hasActor   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/1676386  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.w3.org/1999/02/22-rdf-syntax-ns#type   http://www.w3.org/2000/01/rdf-schema#Resource  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470   http://www.w3.org/2002/07/owl#sameAs   file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#movie/9470

电影的 “hasActor” 属性是通过 OWL 推理机得到的,即我们原本的 RDF 数据里面是没有的。可以在 D2RQ 的 endpoint 中进行同样的查询,得到如下结果:

                   x                                        p                                  o   
http://localhost:2020/resource/movie/9470   http://www.kgdemo.com#movieRating   7.2E0  
http://localhost:2020/resource/movie/9470   http://www.kgdemo.com#movieIntroduction   1940年代的上海,自小受尽欺辱的街头混混阿星(周星驰)为了能出人头地,可谓窥见机会的缝隙就往里钻,今次他盯上行动日益猖獗的黑道势力“斧头帮”,想借之大名成就大业。  阿星假冒“斧头帮”成员试图在一个叫“猪笼城寨”的地方对居民敲诈,不想引来真的“斧头帮”与“猪笼城寨”居民的恩怨。“猪笼城寨”原是藏龙卧虎之处,居民中有许多身怀绝技者(元华、梁小龙等),他们隐藏于此本是为远离江湖恩怨,不想麻烦自动上身,躲都躲不及。而在观战正邪两派的斗争中,阿星逐渐领悟功夫的真谛。  
http://localhost:2020/resource/movie/9470   http://www.kgdemo.com#hasGenre   http://localhost:2020/resource/genre/14  
http://localhost:2020/resource/movie/9470   http://www.kgdemo.com#hasGenre   http://localhost:2020/resource/genre/28  
http://localhost:2020/resource/movie/9470   http://www.kgdemo.com#hasGenre   http://localhost:2020/resource/genre/35  
http://localhost:2020/resource/movie/9470   http://www.kgdemo.com#hasGenre   http://localhost:2020/resource/genre/80  
http://localhost:2020/resource/movie/9470   http://www.kgdemo.com#movieReleaseDate   2004-02-10  
http://localhost:2020/resource/movie/9470   http://www.kgdemo.com#movieTitle   功夫  
http://localhost:2020/resource/movie/9470   http://www.w3.org/1999/02/22-rdf-syntax-ns#type   http://www.kgdemo.com#Movie 

这些是真实存在于 “kg_demo_movie.nt” 的数据。

1.3.规则推理实战

在 “databases” 文件夹下新建一个文本文件“rules.ttl”,填入如下内容:

@prefix : <http://www.kgdemo.com#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <XML Schema> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

[ruleComedian: (?p :hasActedIn ?m) (?m :hasGenre ?g) (?g :genreName '喜剧') -> (?p rdf:type :Comedian)]
[ruleInverse: (?p :hasActedIn ?m) -> (?m :hasActor ?p)]

我们定义了一个名为 “ruleComedian” 的规则,它的意思是:如果有一个演员,出演了一部喜剧电影,那么他就是一位喜剧演员。修改配置文件“fuseki_conf.ttl”:

@prefix :      <http://base/#> .
@prefix tdb:   <http://jena.hpl.hp.com/2008/tdb#> .
@prefix rdf:   <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix ja:    <http://jena.hpl.hp.com/2005/11/Assembler#> .
@prefix rdfs:  <http://www.w3.org/2000/01/rdf-schema#> .
@prefix fuseki: <http://jena.apache.org/fuseki#> .


:service1        a                fuseki:Service ;
fuseki:dataset                    <#dataset> ;
fuseki:name                       "kg_demo_movie" ;
fuseki:serviceQuery               "query" , "sparql" ;
fuseki:serviceReadGraphStore      "get" ;
fuseki:serviceReadWriteGraphStore "data" ;
fuseki:serviceUpdate              "update" ;
fuseki:serviceUpload              "upload" .


<#dataset> rdf:type ja:RDFDataset ;
    ja:defaultGraph <#model_inf> ;
    .

<#model_inf> a ja:InfModel ;
    ja:baseModel <#tdbGraph> ;

    #本体文件的路径
    ja:content [ja:externalContent <file:///D:/apache%20jena/apache-jena-fuseki-3.5.0/run/databases/ontology.ttl> ] ;
    
    #关闭OWL推理机
    #ja:reasoner [ja:reasonerURL <http://jena.hpl.hp.com/2003/OWLFBRuleReasoner>] .

    #开启规则推理机,并指定规则文件路径
    ja:reasoner [
        ja:reasonerURL <http://jena.hpl.hp.com/2003/GenericRuleReasoner> ; 
        ja:rulesFrom <file:///D:/apache%20jena/apache-jena-fuseki-3.5.0/run/databases/rules.ttl> ; ]
    .

<#tdbGraph> rdf:type tdb:GraphTDB ;
    tdb:dataset <#tdbDataset> ;
    .

<#tdbDataset> rdf:type tdb:DatasetTDB ;
    tdb:location "D:/apache jena/tdb_for_demo" ;
    .

我们只能启用一种推理机。前面也提到,OWL 的推理功能也可以在规则推理机里面实现,因此我们定义了 “ruleInverse” 来表示 “hasActedIn” 和“hasActor”的相反关系。更多细节读者可以参考文档。

我们执行如下 SPARQL 查询,喜剧演员有哪些:

PREFIX : <http://www.kgdemo.com#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT * WHERE {
?x rdf:type :Comedian.
?x :personName ?n.
}
limit 10

查询结果:

                            x                                 n      
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/111298   郑丹瑞  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/70591   陈欣健  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/116351   沈殿霞  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/116052   鲍汉琳  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/1002925   张同祖  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/62423   林正英  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/1614091   林琪欣  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/224929   陈法蓉  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/1135398   叶世荣  
file:///D:/d2rq/d2rq-0.8.1/kg_demo_movie.nt#person/119426   元秋  

1.4.小结

本次实践介绍了如何使用 Jena 来开启 endpoint 服务,提供高效的查询;并介绍了如何加入推理引擎。我们是用 Jena 提供的命令行工具来完成上述操作。实际上,jena 提供了所有工具的 API 接口,读者可以用 Java 编写程序,进行开发。

2.KBQA Demo

下面将介绍如何用 Python 完成一个简易的问答程序。下图是 demo 的展示效果:

查询结果为空,回答 “I don't know.”;不能理解问句,回答 “I can't understand.”。本实现参考了王昊奋老师发布在 OpenKG 上的 demo“基于 REfO 的 KBQA 实现及示例”,读者也可以参考此示例,来完成本 demo。下面谈谈本 demo 的流程。

2.1 基本流程

此 demo 是利用正则表达式来做语义解析。我们需要第三方库来完成初步的自然语言处理(分词、实体识别),然后利用支持词级别正则匹配的库来完成后续的语义匹配。

分词和实体识别(人名和电影名)我们用 jieba 来完成。jieba 是一个轻量级的中文分词工具,有多种语言的实现版本。对于分词,在实验环境中,jieba 还是勉强能用。在我们这个 demo 当中,有些经常会被使用的词语并不能被正确切分。比如:“喜剧电影”、“恐怖电影”、“科幻电影”、“喜剧演员”、“出生日期”等,在分词的时候,jieba 把它们当作一个词来处理,我们需要手动调整词语的频率使得 “喜剧电影” 能被切分为 “喜剧” 和“电影”。至于实体识别,jieba 对于人名的识别精度尚可接受,但是电影名称的识别精度太低以至于完全不可用。因此,我们直接把数据库中的人名和电影名导出,作为外部词典;使用 jieba 的时候加载外部词典,这样就能解决实体识别的问题。

将自然语言转为以词为基础的基本单位后,我们使用 REfO(Regular Expressions for Objects) 来完成语义匹配。具体实现请参考 OpenKG 的 demo 或者本 demo 的代码。

匹配成功后,得到其对应的我们预先编写的 SPARQL 模板,再向 Fuseki 服务器发送查询,最后将结果打印出来。

2.2 代码文件说明

kg_demo_movie/
    crawler/
        movie_crawler.py
        __init__.py
        tradition2simple/
            langconv.py
            traditional2simple.py
            zh_wiki.py
            __init__.py
    KB_query/
        jena_sparql_endpoint.py
        query_main.py
        question2sparql.py
        question_temp.py
        word_tagging.py
        external_dict/
            csv2txt.py
            movie_title.csv
            movie_title.txt
            person_name.csv
            person_name.txt
            __init__.py

  • "crawler" 文件夹包含的是我们从 "The Movie DB" 获取数据的脚本。

  • "KB_query" 文件夹包含的是完成整个问答 demo 流程所需要的脚本。

  • "external_dict" 包含的是人名和电影名两个外部词典。csv 文件是从 mysql-workbench 导出的,按照 jieba 外部词典的格式,我们将 csv 转为对应的 txt。

  • "word_tagging",定义 Word 类的结构(即我们在 REfO 中使用的对象);定义 "Tagger" 类来初始化词典,并实现自然语言到 Word 对象的方法。

  • "jena_sparql_endpoint",用于完成与 Fuseki 的交互。

  • "question2sparql",将自然语言转为对应的 SPARQL 查询。

  • "question_temp",定义 SPARQL 模板和匹配规则。

  • "query_main",main 函数。

在运行 "query_main" 之前,读者需要启动 Fuseki 服务,具体方法请参考上一篇文章。

2.3 小结

我们通过使用正则表达式的方式来解析自然语言,并将解析的结果和我们预定义的模板进行匹配,最后实现一个简易的 KBQA。方法没有大家想象的那么 “高大上”,没有统计方法、没有机器学习也没有深度学习。正则的好处是,易学,从事相关行业的人基本都了解这个东西;其次,可控性强或者说可解释性强,如果某个问题解析错误,我们只要找到对应的匹配规则进行调试即可;最后,正则冷启动比较容易,在没有数据或者数据极少的情况下,我们可以利用正则规则马上上线一个类似上述 demo 的初级的问答系统。在现实情况中,由于上述优点,工业界也比较青睐用正则来做语义解析。正则方法的缺陷也是显而易见的,它并不能理解语义信息,而是基于符号的匹配。换个角度说,用正则的方法,就需要规则的设计者能够尽可能考虑到所有情况,然而这是不可能的。暂且不考虑同义词、句子结构等问题,光是罗列所有可能的问题就需要花费很大的功夫。尽管如此,在某些垂直领域,比如 “音乐”,“电影”,由于问题集合的规模在一定程度上是可控的(我们基本能将用户的问题划定在某个范围内),正则表达式还是有很大的用武之地的。在冷启动一段时间,获得了一定用户使用数据之后,我们可以考虑引入其他的方法来改善系统的性能,然后逐渐减少正则规则在整个系统中的比重。如果读者想深入研究 KBQA,可以参考专栏 “揭开知识库问答 KB-QA 的面纱”,该专栏的作者详细介绍了做 KBQA 的方法和相关研究。

3.项目实操

3.1环境配置

  1. Python版本为3.6
  2. 安装依赖pip install -r requirements.txt
  3. jena版本为3.5.0,已经上传在该repo中(如果不用Docker运行demo,需要自己修改配置文件中的路径)。
  4. d2rq使用的0.8.1

3.2 运行方式

这里提供两种运行demo的方式:

  1. 直接构建docker镜像,部署容器服务。推荐这种方式,已经把各种环境配置好了。只需要安装docker,构建镜像。
  2. 直接在本地运行。需要自行修改配置文件(jena/apache-jena-fuseki-3.5.0/run/configuration/fuseki_conf.ttl配置文件中的路径)

3.3 构建docker镜像

进入项目根目录

docker build -t kbqa:V0.1 .
docker run -p 80:80

打开浏览器,输入localhost,即能看到demo界面。

3.4 本地运行

其实就是把Dockerfile里面的命令直接在本地环境运行(记得修改configuration/fuseki_conf.ttl中的文件路径)。

第一步:安装依赖库

pip3.6 install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/

第二步:将nt格式的三元组数据以tdb进行存储(怎么得到kg_demo_movie.nt文件请参考上篇内容)。

/kbqa/jena/apache-jena-3.5.0/bin/tdbloader --loc="path_of_tdb" "path_of_kg_demo_movie.nt" # 自行指定tdb的路径,记得和configuration/fuseki_conf.ttl中一致

window环境是使用/kbqa/jena/apache-jena-3.5.0/bat/tdbloader.bat

第三步:设置环境变量(windows如何设置请自行查询;也可以不设置streamlit端口,使用默认端口,第五步启动后会提示服务的端口)

export LANG=C.UTF-8 LC_ALL=C.UTF-8 STREAMLIT_SERVER_PORT=80 FUSEKI_HOME=/kbqa/jena/apache-jena-fuseki-3.5.0

第四步:运行fuseki(进入apache-jena-fuseki-3.5.0子目录,windows运行fuseki-server.bat)

./fuseki-server

第五步:运行web服务。

streamlit run streamlit_app.py --server.enableCORS=true

打开浏览器,输入指定的地址即可。

3.5 问题集锦

  1. fuseki-server服务启动后,关闭重启会报错。这是jena的一个bug,把tdb中的文件删了,重新用tdbloader命令生成一次即可。
  • 目录结构

    • Data文件夹

    包含ER图模型文件和创建数据库、表,插入所有数据的sql文件。用户可以直接使用sql文件导入数据到mysql中。

    • kg_demo_movie文件夹
    • crawler中的movie_crawler用于从The Movie DB下载数据,用户需要自己去网站注册账号,申请API KEY。在脚本中填入自己的API KEY,填写mysql相关参数即可运行。用户需要额外下载的包:requests和pymysql。tradition2simple用于将繁体字转为简体字(声明一下,我找不到该文件的出处了,我是从网上找到的解决方案,如果有用户知道该作者,麻烦告知,我会备注)。
    • KB_query文件夹包含的是完成整个问答demo流程所需要的脚本。
      • "external_dict"包含的是人名和电影名两个外部词典。csv文件是从mysql-workbench导出的,按照jieba外部词典的格式,我们将csv转为对应的txt。

      • "word_tagging",定义Word类的结构(即我们在REfO中使用的对象);定义"Tagger"类来初始化词典,并实现自然语言到Word对象的方法。

      • "jena_sparql_endpoint",用于完成与Fuseki的交互。

      • "question2sparql",将自然语言转为对应的SPARQL查询。

      • "question_temp",定义SPARQL模板和匹配规则。

      • "query_main",main函数。在运行"query_main"之前,读者需要启动Fuseki服务。

    • ontology.owl 通过protege构建的本体,用户可以直接用protege打开,查看或修改。

    • kg_demo_movie_mapping.ttl 根据d2rq mapping language编辑的映射文件,将数据库中的数据映射到我们构建的本体上。

    • kg_demo_movie.nt 利用d2rq,根据mapping文件,由Mysql数据库转换得到的RDF数据。

    • fuseki_conf.ttl fuseki server配置文件,指定推理引擎,本体文件路径,规则文件路径,TDB路径等

    • rules.ttl 规则文件,用于基于规则的推理。

    • streamlit_app.py web demo文件,基于streamlit库。

项目码源见文末跳转

跳转链接

欢迎关注公众号:汀丶人工智能,公众号也会提供一些相关的资源和优质文章。

#人工智能##自然语言处理##知识图谱##智能问答##NLP#
NLP/知识图谱:信息抽取专栏 文章被收录于专栏

1.本专栏主要包含NLP信息抽取相关技术,如命名实体识别、关系抽取、事件抽取、多任务抽取等;以及智能标注方案。 2.本专栏会提供技术方案、码源等。 3.订阅本专栏可以让你快速实现项目方案,性价比很高,省去找资料试错环节。

全部评论

相关推荐

09-28 17:40
黑龙江大学 Java
#牛客创作赏金赛# 编写页面这个程序设计工程师嘴上的口头禅是&nbsp;&nbsp;2016&nbsp;年&nbsp;建行刚开始最开发的时候听到的,&nbsp;因为大学的时候学习的程序设计语言是一&nbsp;C++为主,对于前端页面这种能看到效果&nbsp;是一种很难体会的概念。学习&nbsp;C&nbsp;语言程序设计的时候显示&nbsp;眼前的是一个命令行黑屏,学&nbsp;C++,&nbsp;C#都是。作为大学生初学程序设计开发,黑屏可以设置为白屏,&nbsp;是要坚持练习编写编译代码。 大学同学总是说&nbsp;大学四年中如果能够写出一个图书管理系统,毕业才能叫开发会编程。一&nbsp;&nbsp;&nbsp;直&nbsp;尝试,发现延修一年才能够设计一套图书借阅系统。不会写算法,但是知道编程是怎么&nbsp;&nbsp;&nbsp;回事,那是&nbsp;跟着市面上培训班的视频来学习一年之后的效果。&nbsp;大学中,&nbsp;是学习到一些&nbsp;&nbsp;&nbsp;基础技能,还是学得很认学得很认真。 毕业之后&nbsp;广州,找工作找了一个月,终于找到一个初级开发&nbsp;银行开发后端。&nbsp;学校,写完&nbsp;&nbsp;&nbsp;毕业论文之后就离开,一路向南。 刚开始开发开发的时候,没有经历过漫长的实习过程,不管没有编程开发经验,都是&nbsp;特大的高压之下开发开发任务。使用建设银行的前端框架编写页面,同时写后台接口,联调,解决开发的业务&nbsp;bug,测试成功提交代码。这个过程很快,但是也会让成长很快。没有一定的抗压能力,都会被退出。没有参加过编程实习,&nbsp;黑龙江念书的时候,面试过一家公司,开发了一套前端编程测试题,实习就实习,就是可能会让打酱油也可能让学到点什么。&nbsp;广州,&nbsp;&nbsp;&nbsp;开发过一些公司的后端实习测试题,开出来的工资就是&nbsp;2k-3k,但是这个过程也会很长。 &nbsp;建设银行退出来之后,过完国庆节日,去了一家小型的公司,遇到一个也是建设银行的高&nbsp;&nbsp;&nbsp;管。前后端分离开发,新型的开发概念,2017&nbsp;年元月初的时候接触了&nbsp;bootstrap&nbsp;前端技术框架。有前端工程师编写页面,后端开发&nbsp;需要编写提供数据的接口,进行前后端联调。这种开&nbsp;&nbsp;&nbsp;发模式效率更高,程序员的分工明确,压力没这么大,开发出来的系统软件用户体验也有很大&nbsp;&nbsp;&nbsp;的改善。Java&nbsp;开发之前是使用&nbsp;JSP&nbsp;和前端页面进行数据渲染,现&nbsp;使用&nbsp;JS&nbsp;框架,更轻量级的开发。 &nbsp;后来的几年的开发过程中,接触的前端&nbsp;js&nbsp;框架虽然不多,但是更新得很快。前端工程师和后端工程师的技术技能分离得更清晰,分工明确。前端工程师虽然不是一个新的开发技&nbsp;&nbsp;&nbsp;能职位,&nbsp;&nbsp;Java&nbsp;开发领域,使用&nbsp;JavaScript&nbsp;框架集成项目的前端页面展示效果,效率性能和用户体验都有很大的提升。 项目前后端分离之后模块开发,开发后台的开发压力减小,开发前台的&nbsp;需要编写好页面和后端联&nbsp;&nbsp;&nbsp;调测试数据正确性,分工明确的一种很好的配合。前端开发的工作压力肯定是有,每个职位&nbsp;&nbsp;&nbsp;都有它存&nbsp;的必要性,作为后端开发没有评价的必要性。建筑开发,记得小的时候是有些主&nbsp;&nbsp;&nbsp;要的瓦匠什么活都可以干,但是建的都是些农村的小洋楼。&nbsp;大城市,建高楼大厦,很多工&nbsp;&nbsp;&nbsp;作都分得很细,效率会更高,时间就是金钱。大城市人口密度高,对人口红利要求大,质量&nbsp;&nbsp;&nbsp;也高,事情不能一个人可以完成。
投递中国建设银行等公司10个岗位 牛客创作赏金赛
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务