卷积神经网络高级篇

1,构造一个复杂的卷积神经网络:

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

batch_size = 64

transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307, ),(0.3081, )) # 均值和标准差
])

train_dataset = datasets.MNIST(
        root='../dataset/mnist/',
        train=True,
        download=True,
        transform=transform
)
train_loader = DataLoader(
    train_dataset,
    shuffle=True,
    batch_size=batch_size
)
test_dataset = datasets.MNIST(
    root='../dataset/mnist',
    train=False,
    download=True,
    transform=transform
)
test_loader = DataLoader(
    test_dataset,
    shuffle=False,
    batch_size=batch_size
)

# 构造复杂的神经网络模型
class InceptionA(torch.nn.Module):
    def __init__(self,in_channels):
        super(InceptionA,self).__init__()
        self.branch1x1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)

        self.branch5x5_1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
        self.branch5x5_2 = torch.nn.Conv2d(16,24,kernel_size=5,padding=2)

        self.branch3x3_1 = torch.nn.Conv2d(in_channels,16,kernel_size=1)
        self.branch3x3_2 = torch.nn.Conv2d(16,24,kernel_size=3,padding=1)
        self.branch3x3_3 = torch.nn.Conv2d(24,24,kernel_size=3,padding=1)

        self.branch_pool = torch.nn.Conv2d(in_channels,24,kernel_size=1)

    def forward(self,x):
        branch1x1 = self.branch1x1(x)

        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch3x3 = self.branch3x3_3(branch3x3)

        branch_pool = F.avg_pool2d(x,kernel_size=3,stride=1,padding=1) # 平均池化 stride为步长
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1,branch5x5,branch3x3,branch_pool]
        return torch.cat(outputs, dim = 1)
    

class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1,10,kernel_size=5)
        self.conv2 = torch.nn.Conv2d(88,20,kernel_size=5)
        
        self.incep1 = InceptionA(in_channels=10)
        self.incep2 = InceptionA(in_channels=20)
        
        self.mp = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(1408,10)

    def forward(self, x):
        batch_size = x.size(0) # 执行完 x(batch_size,1,28,28)
        x = F.relu(self.mp(self.conv1(x))) # 执行完 x 卷积完:(batch_size,10,24,24) -> 池化完:(batch_size,10,12,12) 
        x = self.incep1(x) # 执行完(batch_size,88,12,12)
        x = F.relu(self.mp(self.conv2(x))) # 执行完 x 卷积完:(batch_size,20,8,8) -> 池化完:(batch_size,20,4,4)
        x = self.incep2(x) # 执行完(batch_size,88,4,4) 
        x = x.view(batch_size,-1) # 88x4x4 = 
        x = self.fc(x)
        return x
model = Net()
model.to(device)

criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr = 0.01, momentum=0.5) # 冲量0.5

def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data # inputs : x   target: y
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()
        # forward + backward + update
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0

def test():
    correct = 0
    total = 0
    with torch.no_grad(): # with语句下不执行梯度
        for data in test_loader:
            images, labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            # print(outputs)
            _, predicted = torch.max(outputs.data, dim=1) # dim:维度1  两个返回值:最大概率值及其下标
            # print(predicted)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set: %d %%' % (100 * correct / total))

if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()


2,计算每一层输出的维度:

alt

alt

其余维度见代码注释。

全部评论

相关推荐

不愿透露姓名的神秘牛友
11-24 20:55
阿里国际 Java工程师 2.7k*16.0
程序员猪皮:没有超过3k的,不太好选。春招再看看
点赞 评论 收藏
分享
10-15 09:13
已编辑
天津大学 soc前端设计
点赞 评论 收藏
分享
hso_:哈哈哈哈哈哈我没offer一样在同一道题开喷了
投递深圳同为数码等公司10个岗位
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务