12. 文件描述符fd、select、poll、epoll
1. 从阻塞io到io多路复用
-
阻塞 I/O,是指进程发起调用后,读取的数据一直没准备好,进程会被挂起(阻塞),直到收到数据再返回。如果调用一直不返回,进程就会一直被挂起。因此,当使用阻塞 I/O 时,需要使用多线程来处理多个文件描述符。
-
多线程切换有一定的开销,因此引入非阻塞 I/O。非阻塞 I/O 不会将进程挂起,调用时会立即返回成功或错误,因此可以在一个线程里轮询多个文件描述符是否就绪。
-
但是非阻塞 I/O 的缺点是:每次发起系统调用,只能检查一个文件描述符是否就绪。当文件描述符很多时,系统调用的成本很高。
-
因此引入了 I/O 多路复用,可以通过一次系统调用,检查多个文件描述符的状态。这是 I/O 多路复用的主要优点,相比于非阻塞 I/O,在文件描述符较多的场景下,避免了频繁的用户态和内核态的切换,减少了系统调用的开销。
-
I/O 多路复用相当于将遍历所有文件描述符、通过非阻塞 I/O 查看其是否就绪的过程从用户线程移到了内核中,由内核来负责轮询。
-
进程可以通过 select、poll、epoll 发起 I/O 多路复用的系统调用,这些系统调用都是同步阻塞的:如果传入的多个文件描述符中,有描述符就绪,则返回就绪的描述符;否则如果所有文件描述符都未就绪,就阻塞调用进程,直到某个描述符就绪,或者阻塞时长超过设置的 timeout 后,再返回。I/O 多路复用内部使用非阻塞 I/O 检查每个描述符的就绪状态。
-
如果 timeout 参数设为 NULL,会无限阻塞直到某个描述符就绪;如果 timeout 参数设为 0,会立即返回,不阻塞。I/O 多路复用引入了一些额外的操作和开销,性能更差。但是好处是用户可以在一个线程内同时处理多个 I/O 请求。如果不采用 I/O 多路复用,则必须通过多线程的方式,每个线程处理一个 I/O 请求。后者线程切换也是有一定的开销的。这部分内容可以查看最下文 Redis 的线程模型。
2. 为什么 I/O 多路复用内部需要使用非阻塞 I/O
- I/O 多路复用内部会遍历集合中的每个文件描述符,判断其是否就绪:
for fd in read_set
if( readable(fd) ) // 判断 fd 是否就绪
count++
FDSET(fd, &res_rset) // 将 fd 添加到就绪集合中
break
...
return count
-
这里的 readable(fd) 就是一个非阻塞 I/O 调用。试想,如果这里使用阻塞 I/O,那么 fd 未就绪时,select 会阻塞在这个文件描述符上,无法检查下个文件描述符。
-
注意:这里说的是 I/O 多路复用的内部实现,而不是说,使用 I/O 多路复用就必须使用非阻塞 I/O,见下文为什么边缘触发必须使用非阻塞 I/O。
Select
- 函数签名与参数
int select(int nfds,
fd_set *restrict readfds,
fd_set *restrict writefds,
fd_set *restrict errorfds,
struct timeval *restrict timeout);
-
readfds、writefds、errorfds 是三个文件描述符集合。select 会遍历每个集合的前 nfds 个描述符,分别找到可以读取、可以写入、发生错误的描述符,统称为“就绪”的描述符。然后用找到的子集替换参数中的对应集合,返回所有就绪描述符的总数。
-
timeout 参数表示调用 select 时的阻塞时长。如果所有文件描述符都未就绪,就阻塞调用进程,直到某个描述符就绪,或者阻塞超过设置的 timeout 后,返回。如果 timeout 参数设为 NULL,会无限阻塞直到某个描述符就绪;如果 timeout 参数设为 0,会立即返回,不阻塞。
什么是文件描述符 fd
-
文件描述符(file descriptor)是一个非负整数,从 0 开始。进程使用文件描述符来标识一个打开的文件。
-
系统为每一个进程维护了一个文件描述符表,表示该进程打开文件的记录表,而文件描述符实际上就是这张表的索引。当进程打开(open)或者新建(create)文件时,内核会在该进程的文件列表中新增一个表项,同时返回一个文件描述符 —— 也就是新增表项的下标。
-
一般来说,每个进程最多可以打开 64 个文件,fd ∈ 0~63。在不同系统上,最多允许打开的文件个数不同,Linux 2.4.22 强制规定最多不能超过 1,048,576。
-
每个进程默认都有 3 个文件描述符:0 (stdin)、1 (stdout)、2 (stderr)。
socket 与 fd 的关系
- socket 是 Unix 中的术语。socket 可以用于同一台主机的不同进程间的通信,也可以用于不同主机间的通信。一个 socket 包含地址、类型和通信协议等信息,通过 socket() 函数创建:
int socket(int domain, int type, int protocol)
-
返回的就是这个 socket 对应的文件描述符 fd。操作系统将 socket 映射到进程的一个文件描述符上,进程就可以通过读写这个文件描述符来和远程主机通信。
-
可以这样理解:socket 是进程间通信规则的高层抽象,而 fd 提供的是底层的具体实现。socket 与 fd 是一一对应的。通过 socket 通信,实际上就是通过文件描述符 fd 读写文件。这也符合 Unix“一切皆文件”的哲学。
-
后面可以将 socket 和 fd 视为同义词。
fd_set 文件描述符集合
-
参数中的 fd_set 类型表示文件描述符的集合。
-
由于文件描述符 fd 是一个从 0 开始的无符号整数,所以可以使用 fd_set 的二进制每一位来表示一个文件描述符。某一位为 1,表示对应的文件描述符已就绪。比如比如设 fd_set 长度为 1 字节,则一个 fd_set 变量最大可以表示 8 个文件描述符。当 select 返回 fd_set = 00010011 时,表示文件描述符 1、2、5 已经就绪。
-
fd_set 的使用涉及以下几个 API:
#include <sys/select.h>
int FD_ZERO(int fd, fd_set *fdset); // 将 fd_set 所有位置 0
int FD_CLR(int fd, fd_set *fdset); // 将 fd_set 某一位置 0
int FD_SET(int fd, fd_set *fd_set); // 将 fd_set 某一位置 1
int FD_ISSET(int fd, fd_set *fdset); // 检测 fd_set 某一位是否为 1
select 使用示例
下图的代码说明:
- 先声明一个 fd_set 类型的变量 readFDs
- 调用 FD_ZERO,将 readFDs 所有位置 0
- 调用 FD_SET,将 readFDs 感兴趣的位置 1,表示要监听这几个文件描述符
- 将 readFDs 传给 select,调用 select
- select 会将 readFDs 中就绪的位置 1,未就绪的位置 0,返回就绪的文件描述符的数量
- 当 select 返回后,调用 FD_ISSET 检测给定位是否为 1,表示对应文件描述符是否就绪
比如进程想监听 1、2、5 这三个文件描述符,就将 readFDs 设置为 00010011,然后调用 select。如果 fd=1、fd=2 就绪,而 fd=5 未就绪,select 会将 readFDs 设置为 00000011 并返回 2。
- 如果每个文件描述符都未就绪,select 会阻塞 timeout 时长,再返回。这期间,如果 readFDs 监听的某个文件描述符上发生可读事件,则 select 会将对应位置 1,并立即返回。
select 的缺点
- 性能开销大 调用 select 时会陷入内核,这时需要将参数中的 fd_set 从用户空间拷贝到内核空间 内核需要遍历传递进来的所有 fd_set 的每一位,不管它们是否就绪
- 同时能够监听的文件描述符数量太少。受限于 sizeof(fd_set) 的大小,在编译内核时就确定了且无法更改。一般是 1024,不同的操作系统不相同
poll
poll 和 select 几乎没有区别。poll 在用户态通过数组方式传递文件描述符,在内核会转为链表方式存储,没有最大数量的限制。
poll 的函数签名如下:
int poll(struct pollfd *fds, nfds_t nfds, int timeout);
其中 fds 是一个 pollfd 结构体类型的数组,调用 poll() 时必须通过 nfds 指出数组 fds 的大小,即文件描述符的数量。详细描述见 manpage - poll(2)。
从性能开销上看,poll 和 select 的差别不大。
epoll
epoll 是对 select 和 poll 的改进,避免了“性能开销大”和“文件描述符数量少”两个缺点。
简而言之,epoll 有以下几个特点:
- 使用红黑树存储文件描述符集合
- 使用队列存储就绪的文件描述符
- 每个文件描述符只需在添加时传入一次;通过事件更改文件描述符状态
select、poll 模型都只使用一个函数,而 epoll 模型使用三个函数:epoll_create、epoll_ctl 和 epoll_wait。
epoll_create
int epoll_create(int size);
epoll_create 会创建一个 epoll 实例,同时返回一个引用该实例的文件描述符。
返回的文件描述符仅仅指向对应的 epoll 实例,并不表示真实的磁盘文件节点。其他 API 如 epoll_ctl、epoll_wait 会使用这个文件描述符来操作相应的 epoll 实例。
当创建好 epoll 句柄后,它会占用一个 fd 值,在 linux 下查看 /proc/进程id/fd/,就能够看到这个 fd。所以在使用完 epoll 后,必须调用 close(epfd) 关闭对应的文件描述符,否则可能导致 fd 被耗尽。当指向同一个 epoll 实例的所有文件描述符都被关闭后,操作系统会销毁这个 epoll 实例。
epoll 实例内部存储:
- 监听列表:所有要监听的文件描述符,使用红黑树
- 就绪列表:所有就绪的文件描述符,使用链表
epoll_ctl
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
epoll_ctl 会监听文件描述符 fd 上发生的 event 事件。
参数说明:
-
epfd 即 epoll_create 返回的文件描述符,指向一个 epoll 实例
-
fd 表示要监听的目标文件描述符
-
event 表示要监听的事件(可读、可写、发送错误…)
-
op 表示要对 fd 执行的操作,有以下几种:
-
EPOLL_CTL_ADD:为 fd 添加一个监听事件 event
-
EPOLL_CTL_MOD:Change the event event associated with the target file descriptor fd(event 是一个结构体变量,这相当于变量 event 本身没变,但是更改了其内部字段的值)
-
EPOLL_CTL_DEL:删除 fd 的所有监听事件,这种情况下 event 参数没用
-
返回值 0 或 -1,表示上述操作成功与否。
epoll_ctl 会将文件描述符 fd 添加到 epoll 实例的监听列表里,同时为 fd 设置一个回调函数,并监听事件 event。当 fd 上发生相应事件时,会调用回调函数,将 fd 添加到 epoll 实例的就绪队列上。
epoll_wait
int epoll_wait(int epfd, struct epoll_event *events,
int maxevents, int timeout);
这是 epoll 模型的主要函数,功能相当于 select。
参数说明:
- epfd 即 epoll_create 返回的文件描述符,指向一个 epoll 实例
- events 是一个数组,保存就绪状态的文件描述符,其空间由调用者负责申请 maxevents 指定 events 的大小
- timeout 类似于 select 中的 timeout。如果没有文件描述符就绪,即就绪队列为空,则 epoll_wait 会阻塞 timeout 毫秒。如果 timeout 设为 -1,则 epoll_wait 会一直阻塞,直到有文件描述符就绪;如果 timeout 设为 0,则 epoll_wait 会立即返回
返回值表示 events 中存储的就绪描述符个数,最大不超过 maxevents。
epoll 的优点
-
一开始说,epoll 是对 select 和 poll 的改进,避免了“性能开销大”和“文件描述符数量少”两个缺点。
-
对于“文件描述符数量少”,select 使用整型数组存储文件描述符集合,而 epoll 使用红黑树存储,数量较大。
-
对于“性能开销大”,epoll_ctl 中为每个文件描述符指定了回调函数,并在就绪时将其加入到就绪列表,因此 epoll 不需要像 select 那样遍历检测每个文件描述符,只需要判断就绪列表是否为空即可。这样,在没有描述符就绪时,epoll 能更早地让出系统资源。
-
相当于时间复杂度从 O(n) 降为 O(1)
-
此外,每次调用 select 时都需要向内核拷贝所有要监听的描述符集合,而 epoll 对于每个描述符,只需要在 epoll_ctl 传递一次,之后 epoll_wait 不需要再次传递。这也大大提高了效率。
水平触发、边缘触发
-
select 只支持水平触发,epoll 支持水平触发和边缘触发。
-
水平触发(LT,Level Trigger):当文件描述符就绪时,会触发通知,如果用户程序没有一次性把数据读/写完,下次还会发出可读/可写信号进行通知。
-
边缘触发(ET,Edge Trigger):仅当描述符从未就绪变为就绪时,通知一次,之后不会再通知。
-
区别:边缘触发效率更高,减少了事件被重复触发的次数,函数不会返回大量用户程序可能不需要的文件描述符。
-
水平触发、边缘触发的名称来源:数字电路当中的电位水平,高低电平切换瞬间的触发动作叫边缘触发,而处于高电平的触发动作叫做水平触发。
为什么边缘触发必须使用非阻塞 I/O?
关于这个问题的解答,强烈建议阅读这篇文章下面是一些关键摘要:
三者对比