E1. Close Tuples (easy version)

题目

原谅兄弟我只A了easy…所以就写个easy的题解吧…

思路:用一个map记录各个值的次数,然后如果某数字数量>=3则可以构成n*(n-1)(n-2)个相同的3个数组成的元组,如果某数字(a)数量>=2则可以构成n(n-1)/2*(a-1的数量+a-2的数量+a+1的数量+a+2的数量)个两个数字为a,其余一个为a+1或a-1或a+2或a-2的元组,如果某数字a的数量>=1则可以构成a的数量a-1的数量a+1的数量三个数字不同(a-1,a,a+1)的元组。对了,还要注意下开long long,因为两个2e5相乘会爆int,我因此还wa了一发。

Code:

#include<iostream>
#include<string>
#include<map>
#include<algorithm>
#include<memory.h>
#include<cmath>
#include<bitset>
#define pii pair<int,int>
#define FAST ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
using namespace std;
typedef long long ll;
const int Max = 1e6 + 5;
int lst[Max];
int Mod = 1e9 + 7;


int main()
{
   
	FAST;
	int t;cin >> t;
	while (t--)
	{
   
		ll n;cin >> n;
		map<ll, ll> ma;
		for (int i = 1;i <= n;i++)
		{
   
			int g;cin >> g;
			ma[g]++;
		}
		ll sum = 0;
		for (auto i = ma.begin();i != ma.end();i++)
		{
   
			if (i->second >= 3)
			{
   
				ll p = i->second;
				sum += (p * (p - 1) * (p - 2) / 6);
			}
			ll p = i->first;
			sum += (ma[p - 1] * ma[p] * ma[p + 1]);
			if (i->second >= 2)
			{
   
				sum += ((ma[p] * (ma[p] - 1) / 2) * (ma[p - 1] + ma[p + 1]+ma[p+2]+ma[p-2]));
			}
			if (ma[p - 1] == 0)ma.erase(ma.find(p - 1));
			if (ma[p + 1] == 0)ma.erase(ma.find(p + 1));
			if (ma[p + 2] == 0)ma.erase(ma.find(p + 2));
			if (ma[p -2] == 0)ma.erase(ma.find(p -2));
		}
		cout << sum << endl;
	}
}
全部评论

相关推荐

秋招补录大王:喜欢爸爸还是喜欢妈妈
点赞 评论 收藏
分享
2024-11-07 13:31
怀化学院 Java
勇敢牛牛不怕难:又疯一个
点赞 评论 收藏
分享
评论
点赞
收藏
分享
牛客网
牛客企业服务