数论--模线性方程(组)
模板:
#include<bits/stdc++.h>
using namespace std;
//求x,y使得gcd(a,b)=a*x+b*y;
int extgcd(int a, int b, int &x, int &y)
{
if (b == 0)
{
x = 1;
y = 0;
return a;
}
int d = extgcd(b, a % b, x, y);
int t = x;
x = y;
y = t - a / b * y;
// cout<<x<<" "<<y<<endl;
return d; // d =gcd(a,b);
}
//模线性方程 a * x = b (% n)
void modeq(int a, int b, int n) {
int e,i,d,x,y;
d=extgcd(a,n,x,y);
if(b%d > 0) puts("No answer!");
else {
e = (x*(b/d))%n;
for(i=0; i<d; i++) // !!! here x maybe < 0
printf("%d-th ans: %d\n",i+1,(e+i*(n/d))%n);
}
}
// 模线性方程组
int china(int b[], int w[], int k)
//b是模的值 w是余数的值 且 b和w互质 k是数组的长度
{
int i, d, x, y, m, a = 0, n = 1;
for (i = 0; i < k; i++)
{
n *= w[i]; // 注意不能overflow
}
for (i = 0; i < k; i++)
{
m = n / w[i];
d = extgcd(w[i], m, x, y);
a = (a + y * m * b[i]) % n;
}
if (a > 0)
{
return a;
}
else
{
return (a + n);
}
}
int main()
{
int a,b,n,x,y;
int t1[5]={3,5,7};
int t2[5]={2,4,6};
cin>>a>>b>>n;
cout<<extgcd(a,b,x,y)<<endl;
modeq(a,b,n);
cout<<china(t2,t1,3)<<endl;
return 0;
} 