第七章作业
R代码:
#求单正态均值mu的置信区间 #参数依次为置信水平alpha,正态样本x,已知总体方差(默认为未知) mu <- function(alpha,x,sigma=NA){ n <- length(x) meanx <- mean(x) if(is.na(sigma)){ t1 <- qt(1-alpha/2,n-1) t2 <- qt(1-alpha,n-1) mu11 <- meanx - t1*sqrt(sum((x-meanx)^2)/(n-1))/sqrt(n) mu12 <- meanx + t1*sqrt(sum((x-meanx)^2)/(n-1))/sqrt(n) mu21 <- meanx + t2*sqrt(sum((x-meanx)^2)/(n-1))/sqrt(n) mu22 <- meanx - t2*sqrt(sum((x-meanx)^2)/(n-1))/sqrt(n) } else{ u1 <- qnorm(1-alpha/2,0,1) u2 <- qnorm(1-alpha,0,1) mu11 <- meanx - u1*sigma/sqrt(n) mu12 <- meanx + u1*sigma/sqrt(n) mu21 <- meanx + u2*sigma/sqrt(n) mu22 <- meanx - u2*sigma/sqrt(n) } string1 <- paste('以1-',alpha,'为置信水平的mu双侧置信区间为:[',mu11,', ',mu12,']。',sep='') string2 <- paste('以1-',alpha,'为置信水平的mu单侧置信区间上限为:',mu21,'。',sep='') string3 <- paste('以1-',alpha,'为置信水平的mu单侧置信区间下限为:',mu22,'。',sep='') string <- data.frame(Confidence_Interval=c(string1,string2,string3)) return(string) } #求单正态方差sigma的置信区间 #参数依次为置信水平alpha,正态样本x,已知总体均值(默认为未知) sigma <- function(alpha,x,mu=NA){ n <- length(x) if(is.na(mu)){ meanx <- mean(x) chisq11 <- qchisq(1-alpha/2,n-1) chisq12 <- qchisq(alpha/2,n-1) chisq21 <- qchisq(alpha,n-1) chisq22 <- qchisq(1-alpha,n-1) sigma11 <- sqrt(sum((x-meanx)^2)/chisq11) sigma12 <- sqrt(sum((x-meanx)^2)/chisq12) sigma21 <- sqrt(sum((x-meanx)^2)/chisq21) sigma22 <- sqrt(sum((x-meanx)^2)/chisq22) } else{ chisq11 <- qchisq(1-alpha/2,n) chisq12 <- qchisq(alpha/2,n) chisq21 <- qchisq(alpha,n) chisq22 <- qchisq(1-alpha,n) sigma11 <- sqrt(sum((x-mu)^2)/chisq11) sigma12 <- sqrt(sum((x-mu)^2)/chisq12) sigma21 <- sqrt(sum((x-mu)^2)/chisq21) sigma22 <- sqrt(sum((x-mu)^2)/chisq22) } string1 <- paste('以1-',alpha,'为置信水平的sigma双侧置信区间为:[',sigma11,', ',sigma12,']。',sep='') string2 <- paste('以1-',alpha,'为置信水平的sigma单侧置信区间上限为:',sigma21,'。',sep='') string3 <- paste('以1-',alpha,'为置信水平的sigma单侧置信区间下限为:',sigma22,'。',sep='') string <- data.frame(Confidence_Interval=c(string1,string2,string3)) return(string) } #求两个正态均值差(mux-muy)的置信区间 #参数依次为置信水平alpha,正态样本x,正态样本y, #已知x总体方差sigmax(默认为未知),已知y总体方差sigmay(默认为未知) mux_muy <- function(alpha,x,y,sigmax=NA,sigmay=NA){ if(is.na(sigmax)|is.na(sigmay)){ meanx <- mean(x) meany <- mean(y) m <- length(x) n <- length(y) sx <- sqrt(sum((x-meanx)^2)/(m-1)) sy <- sqrt(sum((y-meany)^2)/(n-1)) sw <- sqrt((m-1)*sx^2/(m+n-2)+(n-1)*sy^2/(m+n-2)) mu11 <- (meanx-meany)+qt(1-alpha/2,m+n-2)*sw*sqrt(1/m+1/n) mu11 <- (meanx-meany)-qt(1-alpha/2,m+n-2)*sw*sqrt(1/m+1/n) } else{ meanx <- mean(x) meany <- mean(y) m <- length(x) n <- length(y) sx <- sqrt(sum((x-mux)^2)/m) sy <- sqrt(sum((y-muy)^2)/n) mu11 <- (meanx-meany)+qt(1-alpha/2,m+n)*sw*sqrt(1/m+1/n) mu11 <- (meanx-meany)-qt(1-alpha/2,m+n)*sw*sqrt(1/m+1/n) } string1 <- paste('以1-',alpha,'为置信水平的mux-muy双侧置信区间为:[',mu11,', ',mu12,']。',sep='') return(string1) } #求两个正态标准差比sigmax/sigmay的置信区间 #参数依次为置信水平alpha,正态样本x,正态样本y, #已知x总体均值mux(默认为未知),已知y总体均值muy(默认为未知) sigmax_sigmay <- function(alpha,x,y,mux=NA,muy=NA){ alpha <- alpha mux <- mux muy <- muy if(is.na(mux)|is.na(muy)){ meanx <- mean(x) m <- length(x) meany <- mean(y) n <- length(y) F1 <- qf(1-alpha/2,m-1,n-1) F2 <- qf(alpha/2,m-1,n-1) sigma11 <- 1/F1*sum((x-meanx)^2)*(n-1)/sum((y-meany)^2)/(m-1) sigma12 <- 1/F2*sum((x-meanx)^2)*(n-1)/sum((y-meany)^2)/(m-1) } else{ m <- length(x) n <- length(y) F1 <- qf(1-alpha/2,m,n) F2 <- qf(alpha/2,m,n) sigma11 <- 1/F1*sum((x-mux)^2)*n/sum((y-muy)^2)/m sigma12 <- 1/F2*sum((x-mux)^2)*n/sum((y-muy)^2)/m } string1 <- paste('以1-',alpha,'为置信水平的sigmax-sigmay双侧置信区间为:[',sigma11,', ',sigma12,']。',sep='') return(string1) }