欧拉函数PHI
分解质因数法
参考:
《合数相关》
/*
* 分解质因数法求解,getFactor(n)函数见《合数相关》
*/
int main(int argc, const char * argv[])
{
// ...
getFactors(n);
int ret = n;
for (int i = 0; i < fatCnt; i++)
{
ret = (int)(ret / factor[i][0] * (factor[i][0] - 1));
}
return 0;
}
筛法欧拉函数
const int MAXN = 100;
int phi[MAXN + 2];
int main(int argc, const char * argv[])
{
for (int i = 1; i <= MAXN; i++)
{
phi[i] = i;
}
for (int i = 2; i <= MAXN; i += 2)
{
phi[i] /= 2;
}
for (int i = 3; i <= MAXN; i += 2)
{
if (phi[i] == i)
{
for (int j = i; j <= MAXN; j += i)
{
phi[j] = phi[j] / i * (i - 1);
}
}
}
return 0;
}
单独求解
/* * 单独求解的本质是公式的应用 */
unsigned euler(unsigned x)
{
unsigned i, res = x; // unsigned == unsigned int
for (i = 2; i < (int)sqrt(x * 1.0) + 1; i++)
{
if (!(x % i))
{
res = res / i * (i - 1);
while (!(x % i))
{
x /= i; // 保证i一定是素数
}
}
}
if (x > 1)
{
res = res / x * (x - 1);
}
return res;
}
线性筛
/* * 同时得到欧拉函数和素数表 */
const int MAXN = 10000000;
bool check[MAXN + 10];
int phi[MAXN + 10];
int prime[MAXN + 10];
int tot; // 素数个数
void phi_and_prime_table(int N)
{
memset(check, false, sizeof(check));
phi[1] = 1;
tot = 0;
for (int i = 2; i <= N; i++)
{
if (!check[i])
{
prime[tot++] = i;
phi[i] = i - 1;
}
for (int j = 0; j < tot; j++)
{
if (i * prime[j] > N)
{
break;
}
check[i * prime[j]] = true;
if (i % prime[j] == 0)
{
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
else
{
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
}
}
return ;
}