WY35 - 等差数列 - 网易
(java实现)
题目描述:
如果一个数列S满足对于所有的合法的i,都有S[i + 1] = S[i] + d, 这里的d也可以是负数和零,我们就称数列S为等差数列。
小易现在有一个长度为n的数列x,小易想把x变为一个等差数列。小易允许在数列上做交换任意两个位置的数值的操作,并且交换操作允许交换多次。但是有些数列通过交换还是不能变成等差数列,小易需要判别一个数列是否能通过交换操作变成等差数列
输入描述:
输入包括两行,第一行包含整数n(2 ≤ n ≤ 50),即数列的长度。
第二行n个元素x[i](0 ≤ x[i] ≤ 1000),即数列中的每个整数。
输出描述:
如果可以变成等差数列输出"Possible",否则输出"Impossible"。
示例1:
输入
3
3 1 2
输出
Possible
问题分析:
首先使用预排序,将数组变为有序的(因为“等差数列”是有序的);然后从第二项开始,检查每一项与前一项的差值是否为定值。
相关知识:
调用数组排序函数:Arrays.sort(arr);
参考代码:
思路一实现:
import java.util.*; public class Main { public static void main(String[] args) { Scanner input = new Scanner(System.in); int n = input.nextInt(); int[] arr = new int[n]; for (int i=0; i<n; i++) { arr[i] = input.nextInt(); } Arrays.sort(arr); int d = arr[1] - arr[0]; boolean flag = false; for (int i=1; i<n; i++) { //用加法判断是否等差会更快些, 因为计算机计算加法比减法要快! //if (d != (arr[i]-arr[i-1])) if (arr[i-1]+d != arr[i]) { flag = true; break; } } if (flag) System.out.println("Impossible"); else System.out.println("Possible"); } }