四、java-中间件-3
1.19 请介绍Redis集群的实现方案
参考答案
Redis集群的分区方案:
Redis集群采用虚拟槽分区来实现数据分片,它把所有的键根据哈希函数映射到0-16383
整数槽内,计算公式为slot=CRC16(key)&16383
,每一个节点负责维护一部分槽以及槽所映射的键值数据。虚拟槽分区具有如下特点:
解耦数据和节点之间的关系,简化了节点扩容和收缩的难度;
节点自身维护槽的映射关系,不需要客户端或者代理服务维护槽分区元数据;
支持节点、槽、键之间的映射查询,用于数据路由,在线伸缩等场景。
Redis集群中数据的分片逻辑如下图:
Redis集群的功能限制:
Redis集群方案在扩展了Redis处理能力的同时,也带来了一些使用上的限制:
key批量操作支持有限。如mset、mget,目前只支持具有相同slot值的key执行批量操作。对于映射为不同slot值的key由于执行mset、mget等操作可能存在于多个节点上所以不被支持。
key事务操作支持有限。同理只支持多key在同一节点上的事务操作,当多个key分布在不同的节点上时无法使用事务功能。
key作为数据分区的最小粒度,因此不能将一个大的键值对象(如hash、list等)映射到不同的节点。
不支持多数据库空间。单机下的Redis可以支持16个数据库,集群模式下只能使用一个数据库空间,即DB0。
复制结构只支持一层,从节点只能复制主节点,不支持嵌套树状复制结构。
Redis集群的通信方案:
在分布式存储中需要提供维护节点元数据信息的机制,所谓元数据是指:节点负责哪些数据,是否出现故障等状态信息。常见的元数据维护方式分为:集中式和P2P方式。
Redis集群采用P2P的Gossip(流言)协议,Gossip协议的工作原理就是节点彼此不断通信交换信息,一段时间后所有的节点都会知道集群完整的信息,这种方式类似流言传播。通信的大致过程如下:
集群中每个节点都会单独开辟一个TCP通道,用于节点之间彼此通信,通信端口号在基础端口号上加10000;
每个节点再固定周期内通过特定规则选择几个节点发送ping消息;
接收ping消息的节点用pong消息作为响应。
其中,Gossip协议的主要职责就是信息交换,而信息交换的载体就是节点彼此发送的Gossip消息,Gossip消息分为:meet消息、ping消息、pong消息、fail消息等。
meet消息:用于通知新节点加入,消息发送者通知接受者加入到当前集群。meet消息通信正常完成后,接收节点会加入到集群中并进行周期性的ping、pong消息交换。
ping消息:集群内交换最频繁的消息,集群内每个节点每秒向多个其他节点发送ping消息,用于检测节点是否在线和交换彼此状态信息。ping消息封装了自身节点和一部分其他节点的状态数据。
pong消息:当接收到meet、ping消息时,作为响应消息回复给发送方确认消息正常通信。pong消息内封装了自身状态数据,节点也可以向集群内广播自身的pong消息来通知整个集群对自身状态进行更新。
fail消息:当节点判定集群内另一个节点下线时,会向集群内广播一个fail消息,其他节点接收到fail消息之后把对应节点更新为下线状态。
虽然Gossip协议的信息交换机制具有天然的分布式特性,但它是有成本的。因为Redis集群内部需要频繁地进行节点信息交换,而ping/pong消息会携带当前节点和部分其他节点的状态数据,势必会加重带宽和计算的负担。所以,Redis集群的Gossip协议需要兼顾信息交换的实时性和成本的开销。
集群里的每个节点默认每隔一秒钟就会从已知节点列表中随机选出五个节点,然后对这五个节点中最长时间没有发送过PING消息的节点发送PING消息,以此来检测被选中的节点是否在线。
如果节点A最后一次收到节点B发送的PONG消息的时间,距离当前时间已经超过了节点A的超时选项设置时长的一半(cluster-node-timeout/2),那么节点A也会向节点B发送PING消息,这可以防止节点A因为长时间没有随机选中节点B作为PING消息的发送对象而导致对节点B的信息更新滞后。
每个消息主要的数据占用:slots槽数组(2KB)和整个集群1/10的状态数据(10个节点状态数据约1KB)。
1.20 说一说Redis集群的分片机制
参考答案
Redis集群采用虚拟槽分区来实现数据分片,它把所有的键根据哈希函数映射到0-16383
整数槽内,计算公式为slot=CRC16(key)&16383
,每一个节点负责维护一部分槽以及槽所映射的键值数据。虚拟槽分区具有如下特点:
解耦数据和节点之间的关系,简化了节点扩容和收缩的难度;
节点自身维护槽的映射关系,不需要客户端或者代理服务维护槽分区元数据;
支持节点、槽、键之间的映射查询,用于数据路由,在线伸缩等场景。
Redis集群中数据的分片逻辑如下图:
1.21 说一说Redis集群的应用和优劣势
参考答案
优势:
Redis Cluster是Redis的分布式解决方案,在3.0版本正式推出,有效地解决了Redis分布式方面的需求。当遇到单机内存、并发、流量等瓶颈时,可以采用Cluster架构方案达到负载均衡的目的。
劣势:
Redis集群方案在扩展了Redis处理能力的同时,也带来了一些使用上的限制:
key批量操作支持有限。如mset、mget,目前只支持具有相同slot值的key执行批量操作。对于映射为不同slot值的key由于执行mset、mget等操作可能存在于多个节点上所以不被支持。
key事务操作支持有限。同理只支持多key在同一节点上的事务操作,当多个key分布在不同的节点上时无法使用事务功能。
key作为数据分区的最小粒度,因此不能将一个大的键值对象(如hash、list等)映射到不同的节点。
不支持多数据库空间。单机下的Redis可以支持16个数据库,集群模式下只能使用一个数据库空间,即DB0。
复制结构只支持一层,从节点只能复制主节点,不支持嵌套树状复制结构。
1.22 说一说hash类型底层的数据结构
参考答案
哈希对象有两种编码方案,当同时满足以下条件时,哈希对象采用ziplist编码,否则采用hashtable编码:
- 哈希对象保存的键值对数量小于512个;
- 哈希对象保存的所有键值对中的键和值,其字符串长度都小于64字节。
其中,ziplist编码采用压缩列表作为底层实现,而hashtable编码采用字典作为底层实现。
压缩列表:
压缩列表(ziplist),是Redis为了节约内存而设计的一种线性数据结构,它是由一系列具有特殊编码的连续内存块构成的。一个压缩列表可以包含任意多个节点,每个节点可以保存一个字节数组或一个整数值。
压缩列表的结构如下图所示:
该结构当中的字段含义如下表所示:
属性 | 类型 | 长度 | 说明 |
---|---|---|---|
zlbytes | uint32_t | 4字节 | 压缩列表占用的内存字节数; |
zltail | uint32_t | 4字节 | 压缩列表表尾节点距离列表起始地址的偏移量(单位字节); |
zllen | uint16_t | 2字节 | 压缩列表包含的节点数量,等于UINT16_MAX时,需遍历列表计算真实数量; |
entryX | 列表节点 | 不固定 | 压缩列表包含的节点,节点的长度由节点所保存的内容决定; |
zlend | uint8_t | 1字节 | 压缩列表的结尾标识,是一个固定值0xFF; |
其中,压缩列表的节点由以下字段构成:
previous_entry_length(pel)属性以字节为单位,记录当前节点的前一节点的长度,其自身占据1字节或5字节:
如果前一节点的长度小于254字节,则“pel”属性的长度为1字节,前一节点的长度就保存在这一个字节内;
如果前一节点的长度达到254字节,则“pel”属性的长度为5字节,其中第一个字节被设置为0xFE,之后的四个字节用来保存前一节点的长度;
基于“pel”属性,程序便可以通过指针运算,根据当前节点的起始地址计算出前一节点的起始地址,从而实现从表尾向表头的遍历操作。
content属性负责保存节点的值(字节数组或整数),其类型和长度则由encoding属性决定,它们的关系如下:
encoding | 长度 | content |
---|---|---|
00 xxxxxx | 1字节 | 最大长度为26 -1的字节数组; |
01 xxxxxx bbbbbbbb | 2字节 | 最大长度为214-1的字节数组; |
10 __ bbbbbbbb ... ... ... | 5字节 | 最大长度为232-1的字节数组; |
11 000000 | 1字节 | int16_t类型的整数; |
11 010000 | 1字节 | int32_t类型的整数; |
11 100000 | 1字节 | int64_t类型的整数; |
11 110000 | 1字节 | 24位有符号整数; |
11 111110 | 1字节 | 8位有符号整数; |
11 11xxxx | 1字节 | 没有content属性,xxxx直接存[0,12]范围的整数值; |
字典:
字典(dict)又称为散列表,是一种用来存储键值对的数据结构。C语言没有内置这种数据结构,所以Redis构建了自己的字典实现。
Redis字典的实现主要涉及三个结构体:字典、哈希表、哈希表节点。其中,每个哈希表节点保存一个键值对,每个哈希表由多个哈希表节点构成,而字典则是对哈希表的进一步封装。这三个结构体的关系如下图所示:
其中,dict代表字典,dictht代表哈希表,dictEntry代表哈希表节点。可以看出,dictEntry是一个数组,这很好理解,因为一个哈希表里要包含多个哈希表节点。而dict里包含2个dictht,多出的哈希表用于REHASH。当哈希表保存的键值对数量过多或过少时,需要对哈希表的大小进行扩展或收缩操作,在Redis中,扩展和收缩哈希表是通过REHASH实现的,执行REHASH的大致步骤如下:
为字典的ht[1]哈希表分配内存空间
如果执行的是扩展操作,则ht[1]的大小为第1个大于等于ht[0].used*2的2n。如果执行的是收缩操作,则ht[1]的大小为第1个大于等于ht[0].used的2n。
将存储在ht[0]中的数据迁移到ht[1]上
重新计算键的哈希值和索引值,然后将键值对放置到ht[1]哈希表的指定位置上。
将字典的ht[1]哈希表晋升为默认哈希表
迁移完成后,清空ht[0],再交换ht[0]和ht[1]的值,为下一次REHASH做准备。
当满足以下任何一个条件时,程序会自动开始对哈希表执行扩展操作:
服务器目前没有执行bgsave或bgrewriteof命令,并且哈希表的负载因子大于等于1;
服务器目前正在执行bgsave或bgrewriteof命令,并且哈希表的负载因子大于等于5。
为了避免REHASH对服务器性能造成影响,REHASH操作不是一次性地完成的,而是分多次、渐进式地完成的。渐进式REHASH的详细过程如下:
为ht[1]分配空间,让字典同时持有ht[0]和ht[1]两个哈希表;
在字典中的索引计数器rehashidx设置为0,表示REHASH操作正式开始;
在REHASH期间,每次对字典执行添加、删除、修改、查找操作时,程序除了执行指定的操作外,还会顺带将ht[0]中位于rehashidx上的所有键值对迁移到ht[1]中,再将rehashidx的值加1;
随着字典不断被访问,最终在某个时刻,ht[0]上的所有键值对都被迁移到ht[1]上,此时程序将rehashidx属性值设置为-1,标识REHASH操作完成。
REHSH期间,字典同时持有两个哈希表,此时的访问将按照如下原则处理:
新添加的键值对,一律被保存到ht[1]中;
删除、修改、查找等其他操作,会在两个哈希表上进行,即程序先尝试去ht[0]中访问要操作的数据,若不存在则到ht[1]中访问,再对访问到的数据做相应的处理。