3.前端算法2

2.10 第K大的数

参考答案

三种方案:

  • 排序,取第 k
  • 构造前 k 个最大元素小顶堆,取堆顶
  • 计数排序或桶排序,但它们都要求输入的数据必须是有确定范围的整数,所以本题不可用

那么除了这两种方案还有没有其它的方式可解决本题喃?其实还有两种:

  • 快速选择(quickselect)算法
  • 中位数的中位数(bfprt)算法

解法一:数组排序,取第 k 个数

最简单

代码实现:

let findKthLargest = function(nums, k) {
    nums.sort((a, b) => b - a);
    return nums[k-1]
};

复杂度分析:

  • 时间复杂度:O(nlogn)
  • 空间复杂度:O(logn)

解法二:构造前 k 个最大元素小顶堆,取堆顶

我们也可以通过构造一个前 k 个最大元素小顶堆来解决,小顶堆上的任意节点值都必须小于等于其左右子节点值,即堆顶是最小值。

所以我们可以从数组中取出 k 个元素构造一个小顶堆,然后将其余元素与小顶堆对比,如果大于堆顶则替换堆顶,然后堆化,所有元素遍历完成后,堆中的堆顶即为第 k 个最大值

具体步骤如下:

  • 从数组中取前 k 个数( 0k-1 位),构造一个小顶堆
  • k 位开始遍历数组,每一个数据都和小顶堆的堆顶元素进行比较,如果小于堆顶元素,则不做任何处理,继续遍历下一元素;如果大于堆顶元素,则将这个元素替换掉堆顶元素,然后再堆化成一个小顶堆。
  • 遍历完成后,堆顶的数据就是第 K 大的数据

代码实现:

let findKthLargest = function(nums, k) {
    // 从 nums 中取出前 k 个数,构建一个小顶堆
    let heap = [,], i = 0
    while(i < k) {
       heap.push(nums[i++]) 
    }
    buildHeap(heap, k)

    // 从 k 位开始遍历数组
    for(let i = k; i < nums.length; i++) {
        if(heap[1] < nums[i]) {
            // 替换并堆化
            heap[1] = nums[i]
            heapify(heap, k, 1)
        }
    }

    // 返回堆顶元素
    return heap[1]
};

// 原地建堆,从后往前,自上而下式建小顶堆
let buildHeap = (arr, k) => {
    if(k === 1) return
    // 从最后一个非叶子节点开始,自上而下式堆化
    for(let i = Math.floor(k/2); i>=1 ; i--) {
        heapify(arr, k, i)
    }
}

// 堆化
let heapify = (arr, k, i) => {
    // 自上而下式堆化
    while(true) {
        let minIndex = i
        if(2*i <= k && arr[2*i] < arr[i]) {
            minIndex = 2*i
        }
        if(2*i+1 <= k && arr[2*i+1] < arr[minIndex]) {
            minIndex = 2*i+1
        }
        if(minIndex !== i) {
            swap(arr, i, minIndex)
            i = minIndex
        } else {
            break
        }
    }
}

// 交换
let swap = (arr, i , j) => {
    let temp = arr[i]
    arr[i] = arr[j]
    arr[j] = temp
}

复杂度分析:

  • 时间复杂度:遍历数组需要 O(n) 的时间复杂度,一次堆化需要 O(logk) 时间复杂度,所以利用堆求 Top k 问题的时间复杂度为 O(nlogk)
  • 空间复杂度:O(k)

解法三:快速选择(quickselect)算法

无论是排序算法还是构造堆求解 Top k问题,我们都经过的一定量的不必要操作:

  • 如果使用排序算法,我们仅仅想要的是第 k 个最大值,但对其余不需要的数也进行了排序
  • 如果使用堆排序,需要维护一个大小为 k 的堆(大顶堆,小顶堆),时间复杂度也为 O(nlogk)

快速选择(quickselect)算法与快排思路上相似,我们先看看快排是如何实现的?

快排

快排使用了分治策略的思想,所谓分治,顾名思义,就是分而治之,将一个复杂的问题,分成两个或多个相似的子问题,在把子问题分成更小的子问题,直到更小的子问题可以简单求解,求解子问题,则原问题的解则为子问题解的合并。

快排的过程简单的说只有三步:

  • 首先从序列中选取一个数作为基准数
  • 将比这个数大的数全部放到它的右边,把小于或者等于它的数全部放到它的左边 (一次快排 partition
  • 然后分别对基准的左右两边重复以上的操作,直到数组完全排序

具体按以下步骤实现:

  • 创建两个指针分别指向数组的最左端以及最右端
  • 在数组中任意取出一个元素作为基准
  • 左指针开始向右移动,遇到比基准大的停止
  • 右指针开始向左移动,遇到比基准小的元素停止,交换左右指针所指向的元素
  • 重复3,4,直到左指针超过右指针,此时,比基准小的值就都会放在基准的左边,比基准大的值会出现在基准的右边
  • 然后分别对基准的左右两边重复以上的操作,直到数组完全排序

注意这里的基准该如何选择喃?最简单的一种做法是每次都是选择最左边的元素作为基准,但这对几乎已经有序的序列来说,并不是最好的选择,它将会导致算法的最坏表现。还有一种做法,就是选择中间的数或通过 Math.random() 来随机选取一个数作为基准,下面的代码实现就是以随机数作为基准。

代码实现

let quickSort = (arr) => {
  quick(arr, 0 , arr.length - 1)
}

let quick = (arr, left, right) => {
  let index
  if(left < right) {
    // 划分数组
    index = partition(arr, left, right)
    if(left < index - 1) {
      quick(arr, left, index - 1)
    }
    if(index < right) {
      quick(arr, index, right)
    }
  }
}

// 一次快排
let partition = (arr, left, right) => {
  // 取中间项为基准
  var datum = arr[Math.floor(Math.random() * (right - left + 1)) + left],
      i = left,
      j = right
  // 开始调整
  while(i <= j) {

    // 左指针右移
    while(arr[i] < datum) {
      i++
    }

    // 右指针左移
    while(arr[j] > datum) {
      j--
    }

    // 交换
    if(i <= j) {
      swap(arr, i, j)
      i += 1
      j -= 1
    }
  }
  return i
}

// 交换
let swap = (arr, i , j) => {
    let temp = arr[i]
    arr[i] = arr[j]
    arr[j] = temp
}

// 测试
let arr = [1, 3, 2, 5, 4]
quickSort(arr)
console.log(arr) // [1, 2, 3, 4, 5]
// 第 2 个最大值
console.log(arr[arr.length - 2])  // 4

快排是从小到大排序,所以第 k 个最大值在 n-k 位置上

复杂度分析

  • 时间复杂度:O(nlog2n)
  • 空间复杂度:O(nlog2n)

快速选择(quickselect)算法

上面我们实现了快速排序来取第 k 个最大值,其实没必要那么麻烦,我们仅仅需要在每执行一次快排的时候,比较基准值位置是否在 n-k 位置上,如果小于 n-k ,则第 k 个最大值在基准值的右边,我们只需递归快排基准值右边的子序列即可;如果大于 n-k ,则第 k 个最大值在基准值的做边,我们只需递归快排基准值左边的子序列即可;如果等于 n-k ,则第 k 个最大值就是基准值

代码实现:

let findKthLargest = function(nums, k) {
    return quickSelect(nums, nums.length - k)
};

let quickSelect = (arr, k) => {
  return quick(arr, 0 , arr.length - 1, k)
}

let quick = (arr, left, right, k) => {
  let index
  if(left < right) {
    // 划分数组
    index = partition(arr, left, right)
    // Top k
    if(k === index) {
        return arr[index]
    } else if(k < index) {
        // Top k 在左边
        return quick(arr, left, index-1, k)
    } else {
        // Top k 在右边
        return quick(arr, index+1, right, k)
    }
  }
  return arr[left]
}

let partition = (arr, left, right) => {
  // 取中间项为基准
  var datum = arr[Math.floor(Math.random() * (right - left + 1)) + left],
      i = left,
      j = right
  // 开始调整
  while(i < j) {

    // 左指针右移
    while(arr[i] < datum) {
      i++
    }

    // 右指针左移
    while(arr[j] > datum) {
      j--
    }

    // 交换
    if(i < j) swap(arr, i, j)

    // 当数组中存在重复数据时,即都为datum,但位置不同
    // 继续递增i,防止死循环
    if(arr[i] === arr[j] && i !== j) {
        i++
    }
  }
  return i
}

// 交换
let swap = (arr, i , j) => {
    let temp = arr[i]
    arr[i] = arr[j]
    arr[j] = temp
}

复杂度分析:

  • 时间复杂度:平均时间复杂度O(n),最坏情况时间复杂度为O(n2)
  • 空间复杂度:O(1)

解法四:中位数的中位数(BFPRT)算法

又称为中位数的中位数算法,它的最坏时间复杂度为 O(n) ,它是由Blum、Floyd、Pratt、Rivest、Tarjan提出。该算法的思想是修改快速选择算法的主元选取方法,提高算法在最坏情况下的时间复杂度。

在BFPTR算法中,仅仅是改变了快速选择(quickselect)算法中 Partion 中的基准值的选取,在快速选择(quickselect)算法中,我们可以选择第一个元素或者最后一个元素作为基准元,优化的可以选择随机一个元素作为基准元,而在 BFPTR 算法中,每次选择五分中位数的中位数作为基准元(也称为主元pivot),这样做的目的就是使得划分比较合理,从而避免了最坏情况的发生。

BFPRT 算法步骤如下:

  • 选取主元
    • 将 n 个元素按顺序分为 n/5 个组,每组 5 个元素,若有剩余,舍去
    • 对于这 n/5 个组中的每一组使用插入排序找到它们各自的中位数
    • 对于上一步中找到的所有中位数,调用 BFPRT 算法求出它们的中位数,作为主元;
  • 以主元为分界点,把小于主元的放在左边,大于主元的放在右边;
  • 判断主元的位置与 k 的大小,有选择的对左边或右边递归

代码实现:

let findKthLargest = function(nums, k) {
    return nums[bfprt(nums, 0, nums.length - 1, nums.length - k)]
}

let bfprt = (arr, left , right, k) => {
  let index
  if(left < right) {
    // 划分数组
    index = partition(arr, left, right)
    // Top k
    if(k === index) {
        return index
    } else if(k < index) {
        // Top k 在左边
        return bfprt(arr, left, index-1, k)
    } else {
        // Top k 在右边
        return bfprt(arr, index+1, right, k)
    }
  }
  return left
}

let partition = (arr, left, right) => {
  // 基准
  var datum = arr[findMid(arr, left, right)],
      i = left,
      j = right
  // 开始调整
  while(i < j) {
    // 左指针右移
    while(arr[i] < datum) {
      i++
    }

    // 右指针左移
    while(arr[j] > datum) {
      j--
    }

    // 交换
    if(i < j) swap(arr, i, j)

    // 当数组中存在重复数据时,即都为datum,但位置不同
    // 继续递增i,防止死循环
    if(arr[i] === arr[j] && i !== j) {
        i++
    }
  }
  return i
}

/**
 * 数组 arr[left, right] 每五个元素作为一组,并计算每组的中位数,
 * 最后返回这些中位数的中位数下标(即主元下标)。
 *
 * @attention 末尾返回语句最后一个参数多加一个 1 的作用其实就是向上取整的意思,
 * 这样可以始终保持 k 大于 0。
 */
let findMid = (arr, left, right) => {
    if (right - left < 5)
        return insertSort(arr, left, right);

    let n = left - 1;

    // 每五个作为一组,求出中位数,并把这些中位数全部依次移动到数组左边
    for (let i = left; i + 4 <= right; i += 5)
    {
        let index = insertSort(arr, i, i + 4);
        swap(arr[++n], arr[index]);
    }

    // 利用 bfprt 得到这些中位数的中位数下标(即主元下标)
    return findMid(arr, left, n);
}

/**
 * 对数组 arr[left, right] 进行插入排序,并返回 [left, right]
 * 的中位数。
 */
let insertSort = (arr, left, right) => {
    let temp, j
    for (let i = left + 1; i <= right; i++) {
        temp = arr[i];
        j = i - 1;
        while (j >= left && arr[j] > temp)
        {
            arr[j + 1] = arr[j];
            j--;
        }
        arr[j + 1] = temp;
    }
    return ((right - left) >> 1) + left;
}

// 交换
let swap = (arr, i , j) => {
    let temp = arr[i]
    arr[i] = arr[j]
    arr[j] = temp
}

复杂度分析:

为什么是5?

在BFPRT算法中,为什么是选5个作为分组?

首先,偶数排除,因为对于奇数来说,中位数更容易计算。

如果选用3,有 图片说明 ,其操作元素个数还是 n

如果选取7,9或者更大,在插入排序时耗时增加,常数 c 会很大,有些得不偿失。

总结

所以,这里我们总结一下,求topk问题其实并不难,主要有以下几个思路:

  • 整体排序:O(nlogn)
  • 局部排序:只冒泡排序前k个最大值,O(nk)
  • 堆:O(nlogk)
  • 计数或桶排序:计数排序用于前k个最值,时间复杂度为O(n + m),其中 m 表示数据范围;桶排序用于最高频k个,时间复杂度为O(n); 但这两者都要求输入数据必须是有确定范围的整数
  • 快速选择(quickselect)算法:平均O(n),最坏O(n2)
  • 中位数的中位数(bfprt)算法:最坏O(n)

2.11 算法题目,验证有效的括号

参考答案

题目

给定一个只包括 '(',')','{','}','[',']'的字符串,判断字符串是否有效。

有效字符串需满足:

左括号必须用相同类型的右括号闭合。 左括号必须以正确的顺序闭合。 注意空字符串可被认为是有效字符串。

解题思路:

第一种:用repace方法,闭合才有效,也就是最里边的也要闭合,那就把最里边的括号取代为空

var isValid = function(s) {
    while(s.length){
        let temp =s;
        s = s.replace('()','');
        s = s.replace('[]','');
        s = s.replace('{}','');
        if(s==temp)return false
    }
    return true
};

第二种:栈思想 括号都是要闭合的,也就是说遇到第一个右括号时,必定左边就是对应的左括号,也就是说把遇到的左括号都放进栈里,然后遇到右括号时取出栈顶的元素匹配 如"{[()]}"遇到{[(放入栈内,然后遇到)与栈顶匹配,栈顶也就是最后一个进栈的元素(,然后把栈的最后一个元素删掉

var isValid = function(s) {
    let a = [];
    let res=0;
    for(let i=0;i<s.length;i++){
        if(s[i]=='('||s[i]=='{'||s[i]=='['){
            a.push(s[i]);
            res++;
        }
        else if(s[i]==')'){
            if(a[a.length-1]=='('){
               a.pop();
                res--;
            }
            else return false
        }
        else if(s[i]=='}'){
            if(a[a.length-1]=='{'){
               a.pop();
                res--;
            }else return false
        }
        else if(s[i]==']'){
            if(a[a.length-1]=='['){
               a.pop();
                res--;
            }else return false
        }
    }
    return res==0
};

比起第一个方法快了不少但是还是慢

第三种:使用map数据结构

var isValid = function(s) {
    let map = {
        "{":"}",
        "[":"]",
        "(":")",
    }
    let leftArr = [];
    for(let ch of s){
        if(ch in map){
            leftArr.push(ch)
        }else{
            if(ch!=map[leftArr.pop()]){
                return false
            }
        }
    }
     return !leftArr.length
};
复制代码

循环s字符串,ch in map 的意思是循环map的键值,也就是遇到左括号时,放进数组,当开始遇到右括号时,用pop()弹出栈顶的元素与与之比对,若是不相等,就ruturn false (leftArr.pop()为左括号,map[key]=value,也就是右括号),当程序走完时,left的length长度应该为0,若不为0则没闭合(当length=0 时,!leftArr.length为turn,当length>0 时,!leftArr.length为false)

2.12 算法题,反转单链表

参考答案

解法一:迭代法
解题思路: 将单链表中的每个节点的后继指针指向它的前驱节点即可

画图实现: 画图帮助理解一下

确定边界条件: 当链表为 null 或链表中仅有一个节点时,不需要反转

代码实现:

var reverseList = function(head) {
    if(!head || !head.next) return head
    var prev = null, curr = head
    while(curr) {
        // 用于临时存储 curr 后继节点
        var next = curr.next
        // 反转 curr 的后继指针
        curr.next = prev
        // 变更prev、curr 
        // 待反转节点指向下一个节点 
        prev = curr
        curr = next
    }
    head = prev
    return head
};

时间复杂度:O(n)

空间复杂度:O(1)

解法二:尾递归法
解题思路: 从头节点开始,递归反转它的每一个节点,直到 null ,思路和解法一类似

代码实现:

var reverseList = function(head) {
    if(!head || !head.next) return head
    head = reverse(null, head)
    return head
};

var reverse = function(prev, curr) {
    if(!curr) return prev
    var next = curr.next
    curr.next = prev
    return reverse(curr, next)
};

时间复杂度:O(n)

空间复杂度:O(n)

解法三:递归法
解题思路: 不断递归反转当前节点 head 的后继节点 next

画图实现: 画图帮助理解一下

代码实现:

var reverseList = function(head) {
    if(!head || !head.next) return head
    var next = head.next
    // 递归反转
    var reverseHead = reverseList(next)
    // 变更指针
    next.next = head
    head.next = null
    return reverseHead
};

时间复杂度:O(n)

空间复杂度:O(n)

全部评论

相关推荐

想润的芹菜人狠话不多:把其中一个老总放中间都会得罪另一个
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务