EmguCV实现颜色物体识别与追踪(CvInvoke.InRange()函数)

文章目录

说明

1、在HSV颜色空间下进行颜色追踪,RGB颜色空间每个通道分量受亮度影响大,HSV颜色空间受亮度影响较小;
2、EmguCV与OpenCV的HSV取值: H:0-180 ; S: 0-255; V: 0-255(注意取值范围);

3、常用的HSV参考值:

4、使用Inrange()函数在HSV空间中寻找HSV在某一范围内的值,输出掩膜,作为寻找结果。

Code

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

using Emgu.CV;
using Emgu.CV.Util;
using Emgu.CV.Structure;
using Emgu.CV.CvEnum;
using Emgu.Util;
using System.Drawing;

namespace lesson28_console
{
   
    class Program
    {
   
        static void Main(string[] args)
        {
   
            ///图片颜色识别
            //Mat srcImg = CvInvoke.Imread(@"C:\Users\hello\Desktop\EmguCVDemo\lesson28\lesson28_console\bin\Debug\opencv-logo-white.png");
            //CvInvoke.Imshow("input", srcImg);

            //Mat hsvImg = new Mat();
            //Mat mask = new Mat();

            //double h_min = 0, s_min = 43, v_min = 46;
            //double h_max = 10, s_max = 255, v_max = 255;
            //ScalarArray hsv_min = new ScalarArray(new MCvScalar(h_min, s_min, v_min));
            //ScalarArray hsv_max = new ScalarArray(new MCvScalar(h_max, s_max, v_max));

            //CvInvoke.CvtColor(srcImg, hsvImg, ColorConversion.Bgr2Hsv);
            //CvInvoke.InRange(hsvImg, hsv_min, hsv_max, mask); //输出为符合要求的图像掩膜
            //CvInvoke.MedianBlur(mask, mask, 5);
            //CvInvoke.Imshow("mask", mask);
            //VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint();
            //VectorOfRect hierarchy = new VectorOfRect();
            发现轮廓
            //CvInvoke.FindContours(mask, contours,hierarchy, RetrType.External, ChainApproxMethod.ChainApproxNone);
            //VectorOfVectorOfPoint contours_approx = new VectorOfVectorOfPoint(contours.Size);
            //Rectangle rect = new Rectangle();
            //for (int i =0; i < contours.Size;i++)
            //{
   
            // CvInvoke.ApproxPolyDP(contours[i], contours_approx[i], 3, true);
            // CvInvoke.DrawContours(srcImg, contours_approx, i, new MCvScalar(255, 0, 0), 1, LineType.EightConnected, hierarchy, 0);
            // CvInvoke.Imshow("red", srcImg);
            // rect = CvInvoke.BoundingRectangle(contours_approx[i]);
            // CvInvoke.Rectangle(srcImg, rect, new MCvScalar(0, 0, 255), 1);
            // CvInvoke.PutText(srcImg, "red", new Point(rect.X, rect.Y), FontFace.HersheyComplexSmall, 1.2, new MCvScalar(0, 255, 0));
            //}
            //CvInvoke.WaitKey(0);


            ///视频绿色物体追踪
            //VideoCapture cap = new VideoCapture("1.mp4");
            //if(!cap.IsOpened) //打开文件失败
            //{
   
            // Console.WriteLine("Open video failed!");
            // return;
            //}
            //Mat frame = new Mat();
            //while(true)
            //{
   
            // //frame = cap.QueryFrame();
            // cap.Read(frame);
            // if(frame.IsEmpty)
            // {
   
            // Console.WriteLine("frame is empty...");
            // break;
            // }
            // Mat hsvimg = new Mat();
            // Mat mask = new Mat();

            // double h_min = 35, s_min = 110, v_min = 106;
            // double h_max = 77, s_max = 255, v_max = 255;

            // ScalarArray hsv_min = new ScalarArray(new MCvScalar(h_min, s_min, v_min));
            // ScalarArray hsv_max = new ScalarArray(new MCvScalar(h_max, s_max, v_max));

            // CvInvoke.CvtColor(frame, hsvimg, ColorConversion.Bgr2Hsv);
            // CvInvoke.InRange(hsvimg, hsv_min, hsv_max, mask);
            // CvInvoke.MedianBlur(mask, mask, 5);
            // CvInvoke.Imshow("mask", mask);

            // VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint();
            // VectorOfRect hierachy = new VectorOfRect();
            // CvInvoke.FindContours(mask, contours, hierachy, RetrType.External, ChainApproxMethod.ChainApproxNone);

            // for(int i = 0; i< contours.Size; i++)
            // {
   
            // Rectangle rect = CvInvoke.BoundingRectangle(contours[i]);
            // if (rect.Width < 10 || rect.Height < 10) //对于太小的外接矩形,删除掉
            // continue;
            // CvInvoke.Rectangle(frame, rect, new MCvScalar(255, 0, 0), 1);
            // CvInvoke.PutText(frame, "green", new Point(rect.X, rect.Y - 5), FontFace.HersheyComplexSmall, 1.2, new MCvScalar(0, 255, 0));
            // }
            // CvInvoke.Imshow("hsv_track", frame);
            // if(CvInvoke.WaitKey(30) == 27)
            // {
   
            // break;
            // }
            //}

            ///蓝色物体追踪
            //VideoCapture cap = new VideoCapture("1.mp4");
            //if (!cap.IsOpened) //打开文件失败
            //{
   
            // Console.WriteLine("Open video failed!");
            // return;
            //}
            //Mat frame = new Mat();
            //while (true)
            //{
   
            // //frame = cap.QueryFrame(); //实验读取到最后一帧有异常
            // cap.Read(frame);
            // if (frame.IsEmpty)
            // {
   
            // Console.WriteLine("frame is empty...");
            // break;
            // }
            // Mat hsvimg = new Mat();
            // Mat mask = new Mat();

            // double h_min = 81, s_min = 77, v_min = 93;
            // double h_max = 125, s_max = 255, v_max = 255;

            // ScalarArray hsv_min = new ScalarArray(new MCvScalar(h_min, s_min, v_min));
            // ScalarArray hsv_max = new ScalarArray(new MCvScalar(h_max, s_max, v_max));


            // //!!!因为图像某一部分存在干扰,所以设置感兴趣区域,只追踪在规定范围内的颜色物体
            // Mat frameROI = new Mat(frame, new Rectangle(0, 0, 350, 353)); //将干扰区域切除

            // CvInvoke.CvtColor(frameROI, hsvimg, ColorConversion.Bgr2Hsv);
            // CvInvoke.InRange(hsvimg, hsv_min, hsv_max, mask);
            // CvInvoke.MedianBlur(mask, mask, 5);
            // CvInvoke.Imshow("mask", mask);

            // VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint();
            // VectorOfRect hierachy = new VectorOfRect();
            // CvInvoke.FindContours(mask, contours, hierachy, RetrType.External, ChainApproxMethod.ChainApproxNone);

            // for (int i = 0; i < contours.Size; i++)
            // {
   
            // Rectangle rect = CvInvoke.BoundingRectangle(contours[i]);
            // if (rect.Width < 10 || rect.Height < 10) //对于太小的外接矩形,删除掉
            // continue;
            // CvInvoke.Rectangle(frame, rect, new MCvScalar(255, 0, 0), 1);
            // CvInvoke.PutText(frame, "blue", new Point(rect.X, rect.Y - 5), FontFace.HersheyComplexSmall, 1.2, new MCvScalar(0, 255, 0));
            // }
            // CvInvoke.Imshow("hsv_track", frame);
            // if (CvInvoke.WaitKey(30) == 27)
            // {
   
            // break;
            // }
            //}


            ///红色绿色同时追踪
            //VideoCapture cap = new VideoCapture("1.mp4");
            //if (!cap.IsOpened) //打开文件失败
            //{
   
            // Console.WriteLine("Open video failed!");
            // return;
            //}
            //Mat frame = new Mat();
            //while (true)
            //{
   
            // //frame = cap.QueryFrame(); //实验读取到最后一帧有异常
            // cap.Read(frame);
            // if (frame.IsEmpty)
            // {
   
            // Console.WriteLine("frame is empty...");
            // break;
            // }
            // Mat hsvimg = new Mat();
            // Mat mask_red = new Mat();
            // Mat mask_green = new Mat();

            // double h_min_red = 0, s_min_red = 127, v_min_red = 128;
            // double h_max_red = 10, s_max_red = 255, v_max_red = 255;

            // double h_min_green = 35, s_min_green = 110, v_min_green = 106;
            // double h_max_green = 77, s_max_green = 255, v_max_green = 255;

            // ScalarArray hsv_min_red = new ScalarArray(new MCvScalar(h_min_red, s_min_red, v_min_red));
            // ScalarArray hsv_max_red = new ScalarArray(new MCvScalar(h_max_red, s_max_red, v_max_red));

            // ScalarArray hsv_min_green = new ScalarArray(new MCvScalar(h_min_green, s_min_green, v_min_green));
            // ScalarArray hsv_max_green = new ScalarArray(new MCvScalar(h_max_green, s_max_green, v_max_green)); 

            // CvInvoke.CvtColor(frame, hsvimg, ColorConversion.Bgr2Hsv);
            // CvInvoke.InRange(hsvimg, hsv_min_red, hsv_max_red, mask_red);
            // CvInvoke.InRange(hsvimg, hsv_min_green, hsv_max_green, mask_green);
            // CvInvoke.MedianBlur(mask_red, mask_red, 5);
            // CvInvoke.MedianBlur(mask_green, mask_green, 5);

            // Mat mask = new Mat();
            // CvInvoke.Add(mask_red, mask_green, mask); //掩膜相加
            // CvInvoke.Imshow("mask", mask); //显示合在一起的掩膜

            // VectorOfVectorOfPoint contours_red = new VectorOfVectorOfPoint();
            // VectorOfRect hierachy_red = new VectorOfRect();
            // CvInvoke.FindContours(mask_red, contours_red, hierachy_red, RetrType.External, ChainApproxMethod.ChainApproxNone);

            // for (int i = 0; i < contours_red.Size; i++)
            // {
   
            // Rectangle rect = CvInvoke.BoundingRectangle(contours_red[i]);
            // if (rect.Width < 10 || rect.Height < 10) //对于太小的外接矩形,删除掉
            // continue;
            // CvInvoke.Rectangle(frame, rect, new MCvScalar(255, 0, 0), 1);
            // CvInvoke.PutText(frame, "red", new Point(rect.X, rect.Y - 5), FontFace.HersheyComplexSmall, 1.2, new MCvScalar(0, 255, 0));
            // }

            // VectorOfVectorOfPoint contours_green = new VectorOfVectorOfPoint();
            // VectorOfRect hierachy_green = new VectorOfRect();
            // CvInvoke.FindContours(mask_green, contours_green, hierachy_green, RetrType.External, ChainApproxMethod.ChainApproxNone);

            // for (int i = 0; i < contours_green.Size; i++)
            // {
   
            // Rectangle rect = CvInvoke.BoundingRectangle(contours_green[i]);
            // if (rect.Width < 10 || rect.Height < 10) //对于太小的外接矩形,删除掉
            // continue;
            // CvInvoke.Rectangle(frame, rect, new MCvScalar(255, 0, 0), 1);
            // CvInvoke.PutText(frame, "green", new Point(rect.X, rect.Y - 5), FontFace.HersheyComplexSmall, 1.2, new MCvScalar(0, 255, 0));
            // }
            // CvInvoke.Imshow("hsv_track", frame);
            // if (CvInvoke.WaitKey(30) == 27)
            // {
   
            // break;
            // }
            //}


            ///手掌肤色提取

            Mat src = CvInvoke.Imread("2.bmp");

            double h_min = 0, s_min = 70, v_min = 70;       //手的HSV颜色分布
            double h_max = 15, s_max = 255, v_max = 255;

            ScalarArray hsv_min = new ScalarArray(new MCvScalar(h_min, s_min, v_min));
            ScalarArray hsv_max = new ScalarArray(new MCvScalar(h_max, s_max, v_max));

            Mat hsvimg = new Mat();
            Mat mask = new Mat();

            CvInvoke.CvtColor(src, hsvimg, ColorConversion.Bgr2Hsv);
            CvInvoke.InRange(hsvimg, hsv_min, hsv_max, mask);
            CvInvoke.MedianBlur(mask, mask, 5);

            VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint();
            VectorOfRect hierarchy = new VectorOfRect();
            //发现轮廓
            CvInvoke.FindContours(mask, contours, hierarchy, RetrType.External, ChainApproxMethod.ChainApproxNone);

            for(int i = 0; i< contours.Size;i++)
            {
   
                Rectangle rect = CvInvoke.BoundingRectangle(contours[i]);
                if (rect.Width < 10 || rect.Height < 10)
                    continue;
                CvInvoke.Rectangle(src, rect, new MCvScalar(255, 0, 0));
                CvInvoke.PutText(src, "hand", new Point(rect.X, rect.Y - 5), FontFace.HersheyComplexSmall, 1.2, new MCvScalar(0, 0, 255));
            }
            CvInvoke.Imshow("hsv_track", src);

            CvInvoke.WaitKey(0);

        }
    }
}

效果

1、寻找图像红色部分:

掩膜:

2、寻找红色部分:

3、寻找视频中的绿色部分:


4、寻找视频中红色与绿色物体:

5、根据手的HSV特征寻找手:

全部评论

相关推荐

11-20 17:33
已编辑
门头沟学院 嵌入式工程师
小米汽车 底软测开岗 n*15(15大概率拿不到) 双非硕
点赞 评论 收藏
分享
喜欢走神的孤勇者练习时长两年半:爱华,信华,等华,黑华
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务