【数据分析学习笔记day13】Pandas的对齐运算+Series 按行、索引对齐+Series的对齐运算+DataFrame的对齐运算+DataFrame按行、列索引对齐+DataFrame的对齐运
文章目录
Pandas的对齐运算
是数据清洗的重要过程,可以按索引对齐进行运算,如果没对齐的位置则补NaN,最后也可以填充NaN
Series的对齐运算
1. Series 按行、索引对齐
示例代码:
s1 = pd.Series(range(10, 20), index = range(10))
s2 = pd.Series(range(20, 25), index = range(5))
print('s1: ' )
print(s1)
print('')
print('s2: ')
print(s2)
运行结果:
s1:
0 10
1 11
2 12
3 13
4 14
5 15
6 16
7 17
8 18
9 19
dtype: int64
s2:
0 20
1 21
2 22
3 23
4 24
dtype: int64
2. Series的对齐运算
示例代码:
# Series 对齐运算
s1 + s2
运行结果:
0 30.0
1 32.0
2 34.0
3 36.0
4 38.0
5 NaN
6 NaN
7 NaN
8 NaN
9 NaN
dtype: float64
DataFrame的对齐运算
1. DataFrame按行、列索引对齐
示例代码:
df1 = pd.DataFrame(np.ones((2,2)), columns = ['a', 'b'])
df2 = pd.DataFrame(np.ones((3,3)), columns = ['a', 'b', 'c'])
print('df1: ')
print(df1)
print('')
print('df2: ')
print(df2)
运行结果:
df1:
a b
0 1.0 1.0
1 1.0 1.0
df2:
a b c
0 1.0 1.0 1.0
1 1.0 1.0 1.0
2 1.0 1.0 1.0
2. DataFrame的对齐运算
示例代码:
# DataFrame对齐操作
df1 + df2
运行结果:
a b c
0 2.0 2.0 NaN
1 2.0 2.0 NaN
2 NaN NaN NaN
填充未对齐的数据进行运算
1. fill_value
使用
add
,sub
,div
,mul
的同时,通过
fill_value
指定填充值,未对齐的数据将和填充值做运算
示例代码:
print(s1)
print(s2)
s1.add(s2, fill_value = -1)
print(df1)
print(df2)
df1.sub(df2, fill_value = 2.)
运行结果:
# print(s1)
0 10
1 11
2 12
3 13
4 14
5 15
6 16
7 17
8 18
9 19
dtype: int64
# print(s2)
0 20
1 21
2 22
3 23
4 24
dtype: int64
# s1.add(s2, fill_value = -1)
0 30.0
1 32.0
2 34.0
3 36.0
4 38.0
5 14.0
6 15.0
7 16.0
8 17.0
9 18.0
dtype: float64
# print(df1)
a b
0 1.0 1.0
1 1.0 1.0
# print(df2)
a b c
0 1.0 1.0 1.0
1 1.0 1.0 1.0
2 1.0 1.0 1.0
# df1.sub(df2, fill_value = 2.)
a b c
0 0.0 0.0 1.0
1 0.0 0.0 1.0
2 1.0 1.0 1.0