【数据分析学习笔记day13】Pandas的对齐运算+Series 按行、索引对齐+Series的对齐运算+DataFrame的对齐运算+DataFrame按行、列索引对齐+DataFrame的对齐运

Pandas的对齐运算

是数据清洗的重要过程,可以按索引对齐进行运算,如果没对齐的位置则补NaN,最后也可以填充NaN

Series的对齐运算

1. Series 按行、索引对齐

示例代码:

s1 = pd.Series(range(10, 20), index = range(10))
s2 = pd.Series(range(20, 25), index = range(5))

print('s1: ' )
print(s1)

print('') 

print('s2: ')
print(s2)

运行结果:

s1: 
0    10
1    11
2    12
3    13
4    14
5    15
6    16
7    17
8    18
9    19
dtype: int64

s2: 
0    20
1    21
2    22
3    23
4    24
dtype: int64

2. Series的对齐运算

示例代码:

# Series 对齐运算
s1 + s2

运行结果:

0    30.0
1    32.0
2    34.0
3    36.0
4    38.0
5     NaN
6     NaN
7     NaN
8     NaN
9     NaN
dtype: float64

DataFrame的对齐运算

1. DataFrame按行、列索引对齐

示例代码:

df1 = pd.DataFrame(np.ones((2,2)), columns = ['a', 'b'])
df2 = pd.DataFrame(np.ones((3,3)), columns = ['a', 'b', 'c'])

print('df1: ')
print(df1)

print('') 
print('df2: ')
print(df2)

运行结果:

df1: 
     a    b
0  1.0  1.0
1  1.0  1.0

df2: 
     a    b    c
0  1.0  1.0  1.0
1  1.0  1.0  1.0
2  1.0  1.0  1.0

2. DataFrame的对齐运算

示例代码:

# DataFrame对齐操作
df1 + df2

运行结果:

     a    b   c
0  2.0  2.0 NaN
1  2.0  2.0 NaN
2  NaN  NaN NaN

填充未对齐的数据进行运算

1. fill_value

使用add, sub, div, mul的同时,

通过fill_value指定填充值,未对齐的数据将和填充值做运算

示例代码:

print(s1)
print(s2)
s1.add(s2, fill_value = -1)

print(df1)
print(df2)
df1.sub(df2, fill_value = 2.)

运行结果:

# print(s1)
0    10
1    11
2    12
3    13
4    14
5    15
6    16
7    17
8    18
9    19
dtype: int64

# print(s2)
0    20
1    21
2    22
3    23
4    24
dtype: int64

# s1.add(s2, fill_value = -1)
0    30.0
1    32.0
2    34.0
3    36.0
4    38.0
5    14.0
6    15.0
7    16.0
8    17.0
9    18.0
dtype: float64


# print(df1)
     a    b
0  1.0  1.0
1  1.0  1.0

# print(df2)
     a    b    c
0  1.0  1.0  1.0
1  1.0  1.0  1.0
2  1.0  1.0  1.0


# df1.sub(df2, fill_value = 2.)
     a    b    c
0  0.0  0.0  1.0
1  0.0  0.0  1.0
2  1.0  1.0  1.0
全部评论

相关推荐

牛客5655:其他公司的面试(事)吗
点赞 评论 收藏
分享
Natrium_:这时间我以为飞机票
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务