Telephone Line S
Telephone Lines
https://ac.nowcoder.com/acm/problem/24950
Telephone Line S
题目大意:
首先你有一张图,问你从到的路径中第条最大的边最小有多大
分析:
这个题很显然是可以二分答案的
但是我们考虑换一种做法:分层图
那么就是跨层的时候让其代价为,那么一共就有层图
在跑一个类似最短路的东西就可以了
#include <bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 1e6 + 10; const int mod = 1e9 + 7; const int inf = 0x7f7f7f7f; inline int __read() { int x(0), t(1); char o (getchar()); while (o < '0' || o > '9') { if (o == '-') t = -1; o = getchar(); } for (; o >= '0' && o <= '9'; o = getchar()) x = (x << 1) + (x << 3) + (o ^ 48); return x * t; } int n, p, k, cur; int head[maxn], edge[maxn], __prev[maxn], cost[maxn]; inline void _addedge(int u, int v, int w) { __prev[++cur] = head[u]; head[u] = cur; edge[cur] = v; cost[cur] = w; } inline void __addedge(int u, int v, int w) { _addedge(u, v, w), _addedge(v, u, w); } int dis[maxn]; bool vis[maxn]; inline void SPFA() { memset (dis, 0x7f, sizeof dis); deque <int> Q; Q.push_back(1); dis[1] = 0; while (!Q.empty()) { int now = Q.front(); Q.pop_front(); vis[now] = 0; for (int i = head[now]; i; i = __prev[i]) { const int v = edge[i]; if (dis[v] <= max(dis[now], cost[i])) continue; dis[v] = max(dis[now], cost[i]); if (vis[v]) continue; if (Q.empty() || dis[v] <= dis[Q.front()]) Q.push_front(v); else Q.push_back(v); vis[v] = 1; } } if (dis[n * (k + 1)] == inf) puts("-1"); else printf ("%d\n", dis[n * (k + 1)]); } int main() { n = __read(), p = __read(), k = __read(); while (p--) { int u = __read(), v = __read(), a = __read(); __addedge(u, v, a); for (int i = 1; i <= k; ++i) { __addedge(i * n + u, i * n + v, a); _addedge((i - 1) * n + u, i * n + v, 0); _addedge((i - 1) * n + v, i * n + u, 0); } } SPFA(); system("pause"); }
有的没的 文章被收录于专栏
RT,有的没的