数据流中的中位数

数据流中的中位数

http://www.nowcoder.com/questionTerminal/9be0172896bd43948f8a32fb954e1be1

描述

这是一篇针对初学者的题解,共用三种方法解决,从暴力算法到最优算法。
知识点:排序,堆
难度:二星


题解

题目描述:对动态数据流求中位数。

方法一:暴力方法

对于一组数据,我们可以用vector<int> arr来存取。如果对vector排好序,则很容易求出中位数。如果vector的大小为sz

  • 如果sz为奇数,假如为3,即[0 1 2],则中位数就是中间的那个数arr[1]
  • 如果sz为偶数,假如为4,即[0 1 2 3], 则中位数就是中间两个数的加权平均数。即 (arr[1] + arr[2]) / 2

代码如下:

class Solution {
public:
    #define SCD static_cast<double>
    vector<int> v;
    void Insert(int num)
    {
        v.push_back(num);

    }

    double GetMedian()
    { 
        sort(v.begin(), v.end());
        int sz = v.size();
        if (sz & 1) {
            return SCD(v[sz >> 1]);
        }
        else {
            return SCD(v[sz >> 1] + v[(sz - 1) >> 1]) / 2;
        }
    }

};

时间复杂度:Insert()为O(1), GetMedian()为O(nlogn)
空间复杂度:O(n)

方法二:插入排序

对于方法一,可以发现有个优化的地方。
方法一中GetMEdian()操作,是每次都对整个vector调用排序操作。
但是其实每次都是在一个有序数组中插入一个数据。因此可以用插入排序。
所以:

  • Insert()操作可改为插入排序
  • GetMedian()操作可直接从有序数组中获取中位数

代码如下:

class Solution {
public:
    #define SCD static_cast<double>
    vector<int> v;
    void Insert(int num)
    {
        if (v.empty()) {
            v.push_back(num);
        }
        else {
            auto it = lower_bound(v.begin(), v.end(), num);
            v.insert(it, num);
        }
    }

    double GetMedian()
    { 
        int sz = v.size();
        if (sz & 1) {
            return SCD(v[sz >> 1]);
        }
        else {
            return SCD(v[sz >> 1] + v[(sz - 1) >> 1]) / 2;
        }
    }

};

时间复杂度:Insert()为O(n),即二分查找的O(logn)和挪动数据的O(n), GetMedian()为O(1)
空间复杂度:O(n)

方法三:堆

中位数是指:有序数组中中间的那个数。则根据中位数可以把数组分为如下三段:
[0 ... median - 1], [median], [median ... arr.size() - 1],即[中位数的左边,中位数,中位数的右边]

那么,如果我有个数据结构保留[0...median-1]的数据,并且可以O(1)时间取出最大值,即arr[0...median-1]中的最大值
相对应的,如果我有个数据结构可以保留[median + 1 ... arr.size() - 1] 的数据, 并且可以O(1)时间取出最小值,即
arr[median + 1 ... arr.size() - 1] 中的最小值。
然后,我们把[median]即中位数,随便放到哪个都可以。

假设[0 ... median - 1]的长度为l_len, [median + 1 ... arr.sise() - 1]的长度为 r_len.
1.如果l_len == r_len + 1, 说明,中位数是左边数据结构的最大值
2.如果l_len + 1 == r_len, 说明,中位数是右边数据结构的最小值
3.如果l_len == r_len, 说明,中位数是左边数据结构的最大值与右边数据结构的最小值的平均值。

说了这么多,一个数据结构可以O(1)返回最小值的,其实就是小根堆,O(1)返回最大值的,其实就是大根堆。并且每次插入到堆中的时间复杂度为O(logn)

所以,GetMedian()操作算法过程为:

  • 初始化一个大根堆,存中位数左边的数据,一个小根堆,存中位数右边的数据
  • 动态维护两个数据结构的大小,即最多只相差一个

代码如下:

class Solution {
public:
    #define SCD static_cast<double>
    priority_queue<int> min_q; // 大顶推
    priority_queue<int, vector<int>, greater<int>> max_q; // 小顶堆

    void Insert(int num)
    {

        min_q.push(num); // 试图加入到大顶推

        // 平衡一个两个堆
        max_q.push(min_q.top()); 
        min_q.pop();

        if (min_q.size() < max_q.si***_q.push(max_q.top());
            max_q.pop();
        }

    }

    double GetMedian()
    { 
        return min_q.size() > max_q.size() ? SCD(min_q.top()) : SCD(min_q.top() + max_q.top()) / 2;
    }

};

时间复杂度:Insert()为O(logn), GetMedian()为O(1)
空间复杂度:O(n)

全部评论
代码打敏感词***我服了
22 回复 分享
发布于 2020-08-17 21:44
方法三被打码***那里可以写成 if (min_q.size() < max_q.si***_q.push(max_q.top()); max_q.pop(); } 另外,我觉得不用那个强制转换也可以,只需要除以2.0即可,int型数据除以小数会使int型数据发生类型提升,自动转成浮点型
5 回复 分享
发布于 2021-02-05 14:03
{ min_q.push(max_q.top()); max_q.pop(); }
5 回复 分享
发布于 2021-02-05 14:05
if (min_q.size() < max_q.size())
4 回复 分享
发布于 2021-02-05 14:05
能问下为啥要强制转化为double吗?为了保证数组为偶数个时中位数的0.5不被舍掉吗?
点赞 回复 分享
发布于 2020-10-22 17:09
建堆的时间复杂度是On吧
点赞 回复 分享
发布于 2022-04-02 19:20
if (min_q.size() < max_q.size()) /*防止河蟹*/ { min_q.push(max_q.top()); max_q.pop(); }
点赞 回复 分享
发布于 2022-05-29 19:12
大小顶堆搞反了吧
点赞 回复 分享
发布于 2022-10-20 09:57 广东
其实方法二用链表存储是不是也是O(logn),性能也是最优
点赞 回复 分享
发布于 2023-09-06 17:23 广东
方法二的 二分查找,有点脱裤子放屁。索性直接按插入排序的逻辑,边比较边移动,只有O(n)复杂度,省去O(lgn)
点赞 回复 分享
发布于 07-20 11:43 广东

相关推荐

字节 飞书绩效团队 (n+2) * 15 + 1k * 12 + 1w
点赞 评论 收藏
分享
头像
10-09 19:35
门头沟学院 Java
洛必不可达:java的竞争激烈程度是其他任何岗位的10到20倍
点赞 评论 收藏
分享
60 14 评论
分享
牛客网
牛客企业服务