Deep Bayes: Discrete Latent Variables

Introduction:

这篇笔记会记录一些离散隐变量模型,转载请注明。
Reference:Deep Bayes

Motivation

  1. Easier to interpret discrete categories than continuous spectrum
    example: discrete variational autoencoder
  2. Allow the model to make a discrete choice
    example: hard attention
    An attention module generates binary mask of where to look at
    The network classifies masked images
    We want attention module to attend only important areas of the image.

Reinforce Estimator

图片说明
However, this typically has large variance
Requires sophisticated Variance Reduction methods
Just taking bigger M gives only a modest improvement.
图片说明
图片说明
Idea: Relax the objective over discrete random samples z into an objective oven continuous random samples during training and use the reparametrization trick:
图片说明

Gumbel-Max trick

图片说明
图片说明
Some ideas about Gumbel Distribution:
https://qinqianshan.com/math/probability_distribution/gumbel-distribution/
图片说明
图片说明
图片说明
图片说明

Variance Reduction

Control Variates
Consider some with tractable expectation . Then图片说明
图片说明
图片说明
图片说明
Simple Baselines:
Constant baseline
图片说明
Variance Minimization:
图片说明
Gumbel-Relaxed Baselines:
图片说明
图片说明

算法小屋 文章被收录于专栏

不定期分享各类算法以及面经。同时也正在学习相关分布式技术。欢迎一起交流。

全部评论

相关推荐

牛客154160166号:9月底还给我发短信,好奇怪,我24届的
点赞 评论 收藏
分享
11-07 13:31
怀化学院 Java
勇敢牛牛不怕难:又疯一个
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务